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ВВЕДЕНИЕ 
 

Механика материалов ― наука о прочности, жесткости и устой-
чивости типовых, наиболее часто встречающихся элементов инже-
нерных конструкций. Цель дисциплины ― теоретическая и практи-
ческая подготовка для проведения расчетов на прочность, жест-
кость, устойчивость и изучения последующих дисциплин, развитие 
инженерного мышления. 

Основные понятия механики материалов опираются на законы и 
теоремы теоретической механики и в первую очередь на законы 
статики и динамики, без знания которых изучение данного предме-
та становится практически невозможным. Механика материалов, 
отличие от теоретической механики, рассматривает задачи, где наи-
более существенными являются свойства деформируемых тел. Не-
обходимость довести решение каждой практической задачи до не-
которого числового результата заставляет в ряде случаев прибегать 
к упрощающим гипотезам ― предположениям, которые оправды-
ваются в дальнейшем путем сопоставления расчетных данных с 
экспериментом. 

Механика материалов принадлежит к прикладным наукам, изу-
чение которых невозможно без систематического решения задач, 
способствующих пониманию и закреплению теоретического мате-
риала. Неправильный расчет на прочность, жесткость и устойчи-
вость самого незначительного, на первый взгляд, элемента конст-
рукции может повлечь за собой очень тяжелые последствия ― при-
вести к разрушению конструкции в целом. При проведении подоб-
ных расчетов необходимо стремиться к сочетанию надежности ра-
боты конструкции с ее экономичностью, добиваться требуемой 
прочности, жесткости и устойчивости при наименьшем расходе ма-
териала (наименьшей стоимости).  

В процессе изучения курса «Механика материалов» студенты 
выполняют расчетно-графические работы (РГР). Количество вы-
полняемых РГР зависит от специальности и количества часов, отве-
денных в учебном плане на изучение курса. Данное учебно-
методическое пособие предназначено для оказания помощи студен-
там при выполнении РГР. В нем приводятся краткие теоретические 
сведения и основные формулы, необходимые для решения задач, 
объясняются смысл и порядок решения задач, задания к РГР. 
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Задание по каждой РГР выдается преподавателем индивидуаль-
но каждому студенту и регистрируется в журнале.  

При выполнении и оформлении РГР необходимо руководство-
ваться общими указаниями: 

1 Приступать к выполнению РГР следует только после изучения 
соответствующего раздела курса и решения рекомендованных на 
практических занятиях задач.   

2 РГР оформляется на стандартных листах писчей бумаги фор-
мата А4 (210х297) чернилами (не красными), четким почерком с 
одной стороны листа. 

3 Первый лист РГР ― это титульный лист, форма и содержание 
которого приведены в приложении. На втором листе представляет-
ся основная надпись для текстовых конструкторских документов по 
ГОСТ 2.104–68 (первый или заглавный лист), а на третьем листе и 
дальше ― основная надпись для всех конструкторских документов 
(последующие листы). 

4 Перед решением каждой задачи требуется выписать полностью 
ее условие с числовыми данными. 

5 Исходная расчетная схема, а также все схемы, полученные в 
результате расчета, вычерчиваются карандашом в удобном для вос-
приятия масштабе с указанием на них в числах с единицами изме-
рения всех величин, необходимых для расчета и полученных в ре-
зультате расчета. 

6 Решение задачи должно сопровождаться краткими, последова-
тельными и грамотными, без сокращения слов объяснениями. Ре-
зультаты всех вычислений должны иметь единицы измерения.  

7 Листы РГР должны быть скреплены (сшиты). 
 
 

1 ИЗГИБ 
 

Литература: [1, с. 9–32, с. 133–169], [2, с. 4–45, с. 286–360],  
[3, 7, задачи № 6.1, 6.5, 6.29, 6.30, 6.33, 6.35, 6.48, 7.5, 7.6]. 

Виды изгибов. Поперечная сила и изгибающий момент, их опре-
деление, правило знаков. Соотношения между внешними нагрузка-
ми, поперечной силой и изгибающим моментом. Выводы, выте-
кающие из соотношений между внешними нагрузками, поперечной 
силой Q и изгибающим моментом М, их использование при провер-
ке эпюр Q и М. Напряжения в поперечных сечениях балки при чис-
том изгибе. Касательные напряжения при поперечном изгибе, фор-

 4



мула Журавского, эпюра касательных напряжений по высоте пря-
моугольного поперечного сечения. Расчет балок на прочность при 
изгибе, условие прочности. Осевые моменты сопротивления сече-
ний простой формы (прямоугольник, круг, кольцо). Осевые момен-
ты сопротивления сечений стандартных прокатных профилей. Ра-
циональные формы поперечных сечений и материалы для балок. 
Перемещения при изгибе. Дифференциальное уравнение упругой 
линии балки и его интегрирование. Метод начальных параметров, 
универсальное уравнение упругой линии балки. 

 
1.1 Виды изгибов 

 
Изгибом называется такой вид нагружения, при котором в попе-

речном сечении элемента конструкции действует изгибающий момент.  
В поперечных сечениях элемента конструкции в общем случае 

нагружения могут действовать другие внутренние силовые факторы 
и поэтому в зависимости от их наличия различают следующие виды 
изгибов: 
чистый – действует только один изгибающий момент М; 
поперечный – одновременно с изгибающим моментом М дейст-

вует и поперечная сила Q (крутящий момент Т и нормальная сила N 
могут действовать и могут быть равными нулю); 
продольный и продольно-поперечный – одновременно с нормальной 

N и поперечной Q силами действует изгибающий момент М. 
Каждый вид изгиба может быть прямым и косым.  
Элемент конструкции (брус), работающий в основном на изгиб, 

называется балкой. Конструкция, состоящая из двух и более балок, 
называется рамой. 

 
1.2 Внутренние силовые факторы – поперечная сила Qy  

и изгибающий момент Мz  
 

Рассмотрим балку, нагруженную внешними силами, лежащими в 
плоскости yox (рисунок 1.1). Применяя метод сечений, проведем 
секущую плоскость и, воспользовавшись уравнениями равновесия 
для оставшейся (левой) части балки, получим соотношения для оп-
ределения и : yQ zM

                   ;                                             (1.1) ∑
=

=
n

i
yiy FQ

1
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                   .                                 (1.2) ( )∑
=

=
n

i
izz FmM

1

 

 
 

Рисунок 1.1 – Схема нагружения балки 
 

Поперечная сила Qу в поперечном сечении бруса (балки) равна 
алгебраической сумме проекций на ось у всех внешних сил, дейст-
вующих на его оставшуюся часть. 

При определении поперечной силы Qу используют правило знаков: 
если внешняя сила стремиться вращать оставшуюся часть бруса 
(балки) по направлению хода часовой стрелки, то она вызывает в 
рассматриваемом сечении положительную поперечную силу, про-
тив хода часовой стрелки ― отрицательную поперечную силу 
(рисунок 1.2).  

 

 
 

Рисунок 1.2 – Схема правила знаков для Qу

 
Изгибающий момент Мz в поперечном сечении бруса (балки) ра-

вен алгебраической сумме моментов относительно оси z всех внеш-
них сил, действующих на его оставшуюся часть. 

При определении изгибающего момента  используют прави-
ло знаков: если внешний момент сжимает верхние волокна бруса 

zM
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(балки), то он вызывает в рассматриваемом сечении положитель-
ный изгибающий момент, если сжимает нижние волокна ― отрица-
тельный изгибающий момент (рисунок 1.3). 

 

 
 

Рисунок 1.3 – Схема правила знаков для Mz

 
По найденным значениям Qу и  на каждом расчетном участке 

строятся их эпюры для всей конструкции. При построении эпюр 
внутренних силовых факторов будем исходить из того, что: 

zM

1 Ординаты эпюр откладываются в принятом масштабе перпен-
дикулярно геометрической оси бруса. 

2 Положительные ординаты эпюр поперечных сил и изгибаю-
щих моментов откладываются вверх от оси балки, отрицательные – 
вниз; у рам положительные ординаты эпюр откладываются с на-
ружной стороны, отрицательные – с внутренней стороны элементов 
рамы. 

3 Для стержней, расположенных внутри рамы, ординаты эпюры 
изгибающих моментов откладываются со стороны сжатых волокон, 
при этом знаки на эпюре не ставятся; положительные ординаты 
эпюры поперечных сил откладываются с левой стороны, а отрица-
тельные – с правой стороны стержней. Таким образом, эпюра изги-
бающих моментов всегда строится со стороны сжатых волокон. 

4 Ординаты эпюры продольных сил откладываются симметрич-
но по обе стороны от оси бруса с указанием знака. 

Внешняя нагрузка, поперечная сила и изгибающий момент свя-
заны между собой следующими дифференциальными соотноше-
ниями: 

                       p
dx
dQ

= ,                                      (1.3) 

                       Q
dx

dM
= .                                     (1.4) 

Соотношения (1.3) и (1.4) показывают, что производная от попе-
речной силы по длине бруса равна интенсивности распределенной 
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нагрузки, а производная от изгибающего момента по длине бруса 
равна поперечной силе. Из этих соотношений вытекают следствия, 
используемые для контроля правильности построения эпюр Qу и 

 для балок и прямолинейных элементов рам: zM
1 На участках, где отсутствует распределенная нагрузка, эпюра 

поперечных сил ограничена линией параллельной оси, а эпюра из-
гибающих моментов ― наклонной прямой. 

2 На участках, нагруженных равномерно распределенной на-
грузкой постоянной интенсивности, эпюра поперечных сил ограни-
чена наклонной прямой линией, а эпюра изгибающих моментов ― 
параболой. 

3 На участках, где поперечная сила отсутствует, эпюра изги-
бающих моментов ограничена линией параллельной оси. 

4 При перемещении вдоль оси сечения слева направо на участках, 
имеющих положительную поперечную силу, изгибающий момент ал-
гебраически возрастает, а на участках, имеющих отрицательную попе-
речную силу, изгибающий момент алгебраически убывает. 

5 Если в пределах расчетного участка эпюра поперечных сил пе-
ресекает нулевую линию, то в сечении где Q = 0 изгибающий мо-
мент будет иметь экстремальное значение.  

Для контроля правильности построении эпюр Qу и  для балок 
и прямолинейных элементов рам используются также следствия, 
вытекающие из метода сечений: 

zM

1 В сечении, где приложена сосредоточенная сила перпендику-
лярная к оси, на эпюре поперечных сил возникает скачок, равный 
по величине приложенной силе, а на эпюре изгибающих моментов 
получается излом. 

2 В сечении, где приложена внешняя пара сил (сосредоточенный 
момент) на эпюре изгибающих моментов возникает скачок, равный 
по величине моменту приложенной пары. 

3 Для рам обязательна статическая проверка, заключающаяся в про-
верке равновесия каждого узла, вырезанного из нагруженной рамы.  

 
1.3 Напряжения в поперечных сечениях балки  

при чистом изгибе 
 

При рассмотрении данного вопроса примем балку, имеющую 
продольную плоскость симметрии, в которой действуют все внеш-
ние силы. В этом случае балка будет работать в условиях плоского 
изгиба, т.е. без коробления или скручивания. Представим наиболее 
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простой случай изгиба – чистый изгиб (рисунок 1.4). В поперечных 
сечениях балки действует только изгибающий момент, причем оди-
наковой величины, равной m.  

 
 

Рисунок 1.4 – Чистый изгиб бруса 
 

Воспользуемся методом сечений, проведем секущую плоскость I 
- I и представим оставшуюся левую часть балки (рисунок 1.5). Про-
ведем в правом торцевом сечении координатные оси: у – в продоль-
ной плоскости симметрии балки; х – вдоль нейтрального слоя в 
продольной плоскости симметрии балки (слой продольных воло-
кон, который не изменяет своей длины при нагружении, называется 
нейтральным слоем);  z – совпадает с нейтральной линией (линия, 
образованная от пересечения нейтрального слоя с поперечным се-
чением). При чистом изгибе оси y и z являются главными централь-
ными осями инерции поперечного сечения. В окрестности произ-
вольной точки В с координатами z и у выделим элементарную пло-
щадку dA, в пределах которой действует сила равная   dN = σ dA.   

 
 

Рисунок 1.5 – Оставшаяся левая часть балки 
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При чистом изгибе нормальные напряжения в любой точке по-
перечного сечения бруса, расположенной на расстоянии у от ней-
тральной оси определяются по формуле: 

                       y
I

M

z

z=σ  ,                                      (1.5) 

где  ― изгибающий момент в поперечном сечении бруса отно-
сительно оси z; 

zM

zI  ― момент инерции сечения относительно оси z. 
Анализ формулы (1.5) показывает: 

— напряжение в произвольной точке поперечного сечения балки 
прямо пропорционально расстоянию от нейтральной оси до этой 
точки; 
― напряжения, изменяясь по высоте сечения, остаются постоянны-
ми по его ширине. 

Эпюра нормальных напряжений, возникающих в поперечном се-
чении балки при чистом изгибе, представлена на рисунке 1.6, из ко-
торого видно, что максимальные напряжения при изгибе возникают 
в точках наиболее удаленных от нейтральной оси :  

                          maxmax y
I

M

z

z=σ  .                                (1.6) 

 

 
            

Рисунок 1.6 – Эпюра нормальных напряжений 
 

Таким образом, наибольшие растягивающие и сжимающие на-
пряжения в поперечном сечении балки возникают в наиболее уда-
ленных от нейтральной оси точках. 
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При чистом изгибе ось балки искривляется в продольной плос-
кости симметрии, перпендикулярной нейтральному слою. Зависи-
мость кривизны оси балки от изгибающего момента представляется 
формулой: 

                      
zIE

M z1
=

ρ
.                                     (1.7) 

Произведение E Iz называется жесткостью поперечного сечения 
балки при изгибе. При E Iz = const и Мz = const ось балки искривля-
ется по дуге окружности радиусом ρ. Как видно из формулы (1.7) 
кривизна оси балки прямо пропорциональна изгибающему моменту 
Мz и обратно пропорциональна жесткости поперечного сечения 
балки E Iz . 

Примечание. Формулы нормальных напряжений (1.5) и кривиз-
ны оси (1.7) для чистого изгиба балки будут давать точные значе-
ния и при поперечном изгибе. Если поперечная сила изменяется 
вдоль оси бруса, то формула (1.3) для нормальных напряжений дает 
незначительную погрешность, величина которой имеет порядок  h / 
l  по сравнению с 1 (где h – высота поперечного сечения,  l  – длина 
бруса). 

 
1.4 Касательные напряжения при поперечном изгибе 

 
Представим консольно закрепленную балку, испытывающую 

поперечный изгиб (рисунок 1.7). Рассмотрим некоторое сечение А 
― А. Полное касательное напряжение τ вблизи контура направлено 
по касательной к контуру сечения. Касательное напряжение в каж-
дой точке сечения можно разложить на две составляющие τxy  и  τxz . 
Методами теории упругости доказывается, что в большинстве слу-
чаев составляющие τxz оказывают на прочность значительно мень-
шее влияние, чем  τxy . Определим касательные напряжения при по-
перечном изгибе положив, что  τ ≈ τxy . Вычислить эти напряжения 
проще через парные им касательные напряжения, возникающие в 
продольных сечениях бруса. 
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Рисунок 1.7 – Поперечный изгиб балки 
 
Принимая в первом приближении равномерное распределение  

касательных напряжений по ширине сечения, представим формулу 
для их вычисления: 

                            *

*

bI

SQ

z

zy=τ ,                                            (1.8) 

где — статический момент относительно оси z части площади 
поперечного сечения бруса, расположенной выше или ниже уровня 
у, в точках которого вычисляются касательные напряжения; 

*
zS

zI  – момент инерции относительно оси z площади всего попе-
речного сечения бруса; 

*b  – ширина поперечного сечения бруса на уровне у, в точках 
которого вычисляются касательные напряжения. 

Формула для определения касательных напряжений (1.8) была 
выведена русским ученым и инженером Д.И. Журавским и носит 
его имя, который первым провел исследование касательных напря-
жений при поперечном изгибе. 

Используя формулу Журавского (1.8), получаем формулу для 
вычисления касательных напряжений в балке прямоугольного по-
перечного сечения (1.9) в точках, расположенных на расстоянии у 
от нейтральной оси, т.е. от оси z (рисунок 1.8).                  
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Рисунок 1.8 – Поперечное сечение балки и эпюра касательных напряжений 

                      ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=τ 2

2

3 4
6

yh
hb

Qy  .                               (1.9) 

По формуле (1.9) построена эпюра касательных напряжений (ри-
сунок 1.8), из которой видно, что в точках наиболее удаленных от 

нейтральной оси (
2
hy = ) касательное напряжение равно нулю, а в 

точках на нейтральной оси (у = 0) касательное напряжение имеет 
максимальное значение равное 

                        
hb

Qy

2
3

max =τ .                                   (1.10) 

 
 

1.5 Расчет балок на прочность при изгибе 
 

При поперечном изгибе максимальные нормальные напряжения 
в поперечном сечении бруса существенно превышают максималь-
ные касательные напряжения (  относится к  примерно как 
длина бруса к высоте поперечного сечения). Также известно, что в 
точках поперечного сечения бруса наиболее удаленных от ней-
тральной оси , 

maxσ maxτ

maxσ=σ 0=τ , а на нейтральной оси , maxτ=τ
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0=σ . В этой связи, расчет нетонкостенных балок на прочность 
при поперечном изгибе производится по нормальным напряжениям. 
При выполнении этого расчета принимается во внимание, что опас-
ными точками являются точки наиболее удаленные от нейтральной 
оси и находятся они в сечении балки, в котором действует макси-
мальный изгибающий момент. Тогда условие прочности при изгибе 
имеет вид: 

               [ ]σ≤⋅=σ max
max

max y
I

M

z
.                         (1.11) 

Отношение 
maxy
I z  обозначается через  и называется осевым 

моментом сопротивления. Если поперечное сечение симметрично 
относительно оси  z, то условие прочности при изгибе представля-
ется соотношением 

zW

                  [ ]σ≤=σ
zW

M max
max .                              (1.12)   

Осевой момент сопротивления  для некоторых симметричных 
сечений определяется по формулам, представленным в таблице 1.1. 

zW

Значения осевых моментов сопротивления для стандартных прокат-
ных профилей принимаются из соответствующих таблиц сортамента. 

При использовании для балок хрупкого материала, который, как 
известно, при сжатии сопротивляется лучше, чем при растяжении 
( [ ] [ ]pc σ>σ ), поперечное сечение должно быть несимметричным 
относительно нейтральной оси, причем большая часть его площади 
располагается в растянутой зоне (рисунок 1.9). Условие прочности 
в данном случае представится двумя соотношениями: 

              ( ) [ c1
max

1min σ≤⋅=σ=σ y
I

M

z
] ,                  (1.13) 

              ( ) [ ]p2
max

2max σ≤⋅=σ=σ y
I

M

z
,                (1.14) 

где ( )1  и  ― нормальные напряжения в точках, соответствен-
но, 1 и 2; 

σ ( )2σ

[ ]pσ  и  – допускаемое напряжение, соответственно, на рас-
тяжение и на сжатие. 

[ cσ ]
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Рисунок 1.9 – Несимметричное поперечное сечение бруса 
 
 
 
 
Таблица 1.1 – Некоторые геометрические характеристики сечений 

 
Форма и размеры 

поперечного сечения 
Геометрические характеристики сечения 

 
 

 

12

3hbI z = ,  
2max
hy =  ,  

6

2hbWz = . 
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Продолжение таблицы 1.1  
 

Форма и размеры 
поперечного сечения 

Геометрические характеристики сечения 

 

 
64

4dI z
π

=  ,    
2max
dy =  ,  

       
32

3dWz
π

=  . 

 

   ( )4
4

í 1
64

ñdIz −
π

=  , 
í

â
d
dñ =  ,  

   
2
í

max
dy =  ,  

  ( )4
3

í 1
32

ñdWz −
π

=  . 

 
1.6 Метод начальных параметров 

 
Для определения перемещений в балках существует метод, не 

требующий непосредственного интегрирования дифференциально-
го уравнения изогнутой оси, который называется методом Коши–
Крылова или методом начальных параметров. Под действием 
внешних сил, расположенных в продольной плоскости симметрии 
прямой балки, ее ось искривляется в этой же плоскости; при этом 
точки оси балки перемещаются. Под перемещением сечения или 
прогибом сечения (у) понимается перемещение его центра тяжести 
по направлению перпендикулярному к оси балки в ненагруженном 
состоянии, а под углом поворота сечения ( θ ) ― угол, на который 
поворачивается сечение по отношению к своему положению в не-
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нагруженном состоянии. Прогиб считается положительным, если 
перемещение центра тяжести поперечного сечения при нагружении 
балки происходит вверх, отрицательным ― если вниз. Угол пово-
рота сечения считается положительным, если поперечное сечение 
поворачивается при нагружении балки против хода часовой стрел-
ки, отрицательным ― если по ходу часовой стрелки. 

Представим левую часть балки длиной х, к которой приложены 
пара сил с моментом m, сосредоточенная сила F и распределенная 
нагрузка постоянной интенсивности p (рисунок 1.10). Выберем на-
чало координат О в крайнем левом сечении балки, ось у направим 
вверх, ось х вправо. Тогда прогиб и угол поворота сечения балки 
вначале координат будут обозначены соответственно  и , а 
определяемые прогиб и угол поворота сечения на расстоянии х от 
начала координат – соответственно  и .  

0y 0θ

xy xθ
В сечении балки на расстоянии х от начала координат действует 

изгибающий момент равный 

           ( ) ( ) ( )
2

2cxpbxFM mx
−

+−+=  .               (1.15) 

Тогда дифференциальное уравнение упругой линии балки пред-
ставится в следующем виде 

               ( ) ( )
2

2

2

2 cxpbxF
dx

ydIE mx
z

−
+−+= .            (1.16) 
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Рисунок 1.10 – Схема нагружения балки 
Последовательно интегрируя уравнение (1.16) два раза и под-

ставляя пределы интегрирования, получаем формулы для определе-
ния угла поворота (1.17) и прогиба (1.18) сечения балки, располо-
женного на расстоянии х от начала координат. 

( ) ( ) ( )
62

32

0
cxpbxFIEIE axmzxz

−
+

−
++θ=θ − .         (1.17) 

( ) ( ) ( )
246

43

00
2

2
cxpbxFxIEyIEyIE

axmzzxz
−

+
−

++θ+=
− .   (1.18) 

Если к балке слева от сечения, где определяется перемещение, 
приложено число  пар сил с моментами min i,  число  сосредото-
ченных сил F

jn

j  и число  распределенных нагрузок постоянной 
интенсивности q

kn

k , то формулы для определения углов поворота xθ  
и прогибов  сечений балки, расположенных на расстоянии х от 
начала координат соответственно можно записать в виде:          

xy

( ) ( ) ( )
∑∑∑ −
===

−
+

−
++θ=θ

kji n

k

k
k

n

j

j
j

n

i
zxz

cx
p

bx
FIEIE ii axm

1

3

1

2

1
0 62

.(1.19) 

 
( ) ( )

( ) ,
24

6

1

4

1

3

1
00

2

2

∑

∑∑
−

=

==

−
+

+
−

++θ+=

k

ji

n

k

k
k

n

j

j
j

n

i
zzxz

cxp

bx
FxIEyIEyIE i

i
ax

m (1.20) 

где ,  – соответственно прогиб и угол поворота сечения в на-
чале координат или начальные параметры; 

0y 0θ

ia , ,  – расстояние от начала координат до, соответственно, па-
ры сил с моментом m

jb kc

i , сосредоточенной силы  Fj , начала распреде-
ленной нагрузки интенсивностью pk . 

При нахождении перемещений с помощью метода начальных 
параметров, в котором используются формулы (1.19–1.20), нужно 
иметь ввиду следующие обстоятельства:  
— в формулы  (1.19–1.20) подставляются значения внешних  нагру-
зок, расположенных только слева от сечения, в котором определя-
ются перемещения;  
— если распределенная нагрузка не доходит до сечения, в котором 
определяется перемещение (рисунок 1.11, а), то ее необходимо про-
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длить вправо до сечения и ввести компенсирующую распределен-
ную нагрузку той же интенсивности, но противоположно направ-
ленную (рисунок 1.11, б). 
— в правой части формул (1.19, 1.20) знак перед каждым слагае-
мым, содержащим внешнюю нагрузку (m, F, p), ставится таким же, 
как и знак изгибающего момента от соответствующей внешней на-
грузки;  

 
                 а)                                                                              б) 

Рисунок 1.11 – Учет распределенной нагрузки 
 

Начальные параметры  и  определяются из граничных ус-
ловий, вытекающих из схемы закрепления балки, которую можно 
свести к одному из следующих случаев: 

0y 0θ

1) Балка жестко закреплена одним концом: 
— жесткая заделка слева (рисунок 1.12) –  = 0  и   = 0; 0y 0θ
— жесткая заделка справа (рисунок 1.13) –  и  . Если 
балку зеркально отобразить относительно жесткой заделки (рису-
нок 1.14), то окажется, что  = 0  и   = 0. 

00 ≠y 00 ≠θ

0y 0θ

 
Рисунок 1.12 – Жесткая заделка слева 

 

 
Рисунок 1.13 – Жесткая заделка справа 

 19



 
Рисунок 1.14 – Зеркальное отображение балки 

 
2) Балка закреплена с помощью неподвижного и подвижного 

шарниров. 
а) Один из шарниров приходится на крайнее левое сечение балки 

(рисунок 1.15) –   = 0  и  . 0y 00 ≠θ

 
 

Рисунок 1.15 – Шарнир в крайнем левом сечении балки 
 

Для определения начального параметра  используем гранич-
ное условие, вытекающее из расчетной схемы балки 
(рисунок 1.15) – прогиб в сечении С равен нулю (  = 0). Состав-
ляем уравнение прогиба для сечения С в виде 

0θ

Cy

( ) ( ) ( )
0

2462

4
1

32
1

0 =
−

−+
−

−θ=
lxpxBlxxIEyIE CC

y
C

CzCz m .(1.21) 

Подставляя в уравнение (1.21)  хС = l1 + l2, находим величину 
 и начальный параметр .  0θzIE 0θ

б) Балка справа и слева имеет консоль (рисунок 1.16) –   
и  .  

00 ≠y
00 ≠θ
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Рисунок 1.16 – Балка с консолями слева и справа 
 

Для определения начальных параметров  и  используем 
граничные условия, вытекающее из расчетной схемы балки (рису-
нок 1.16) – прогибы в сечениях  В и С равны нулю (  = 0;  

 = 0) . Составим уравнения прогибов для сечений В и С в виде: 

0y 0θ

Ây

Cy

      0
2

2
00 =−θ+= BxmBzzBz xIEyIEyIE ,                (1.22) 

( ) ( )
0

2462

4
21

3
1

2

00 =
−−

−
−

+−θ+=
llx

p
lx

B
x

xIEyIEyIE CC
y

C
CzzCz m . (1.23) 

Подставляя  хВ = l1 и хС = (l1 + l2 + l3) и решая систему уравнений 
(1.22), (1.23), находим величины  и , а затем, если 
нужно ― начальные параметры  и .  

0yIE z 0θzIE

0y 0θ
 

1.7 Пример решения задачи (балка) 
 

Для заданной балки (рисунок 1.17) требуется построить эпюры 
поперечных сил и изгибающих моментов, подобрать номер профи-
ля стального двутавра при [σ] = 160 МПа. Используя метод началь-
ных параметров, определить прогибы в сечениях, приходящихся на 
границы расчетных участков, и углы поворота сечений, приходя-
щихся на опоры, построить приближенную изогнутую ось (упругую 
линию) балки. Весом балки пренебречь. 
Решение. Проводим координатные оси. При этом ось х совмеща-

ем с осью балки, ось у проводим перпендикулярно оси х в точке В. 
Рассматриваем равновесие балки, для чего наложенные связи со 
стороны опор заменяем реакциями. Опора В ― шарнирно-
неподвижная. Реакцию опоры представляем составляющими Ву 
и Вх, проходящими через ось шарнира. Опора С ― шарнирно-
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подвижная. Реакция такой опоры проходит через ось шарнира и на-
правлена перпендикулярно оси балки. 

Таким образом, на балку действует уравновешенная плоская 
система сил. Для нахождения неизвестных  Ву ,Вх  и Су , составляем 
уравнения равновесия:   

Σ mc (Fi ) = –Ву ×  3 + F ×  4 + m + p ×  2 ×  2 – p ×  1 ×  0,5 = 0;                
Σ mВ (Fi ) = –Су ×  3 – m + p ×  2 ×  1 − F ×  1 + p ×  1 ×  3,5 = 0;      
Σ Fх = Вх = 0. 
Последнее уравнение необходимо для определения составляю-

щей Вх, которая в данной задаче равна нулю, поскольку к балке не 
приложены силы, которые проектируются на ось х.  

 
Рисунок 1.17 – Расчетные схемы, эпюры поперечных сил,  

изгибающих моментов в сечениях балки и изогнутая ось балки 
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Решаем уравнения равновесия и находим реакции опор 

293
5,01022108411

3
5,0224 =×−××++×=×−××++×= ppmFBy кН,  

123
5,310112108

3
5,31112 =×+−×+−=××+×−××+−= pFpmCy кН. 

Для проверки правильности определения реакций опор составим 
не использованное в этой задаче уравнение равновесия в виде сум-
мы проекций сил на ось у и подставим их значения: 

Σ Fу = Ву – p ×  2 – F + Cу – p ×  1 = 29 – 20 – 11 + 12 – 10 = 0.  
В результате расчета получили Σ Fу = 0, что указывает на пра-

вильность определения реакций опор. 
Разбиваем балку на четыре расчетных участка, принимая за их 

границы сечения, где приложены внешние сосредоточенные силы, 
момент, а также начало и конец распределенной нагрузки. 

В пределах первого участка проводим произвольное поперечное 
сечение на расстоянии х1 от начала координат (точки О). Мысленно 
отбрасываем правую часть балки и, учитывая правила знаков, со-
ставляем уравнения для  и  на первом участке.  

1xQ
1xM

                 Ι участок: 0 ≤ х1 ≤ 1 м. 
                    = – F ; 

1xQ
                   = – F х

1xM 1. 
Из уравнений следует, что на первом участке поперечная сила 

постоянная, а изгибающий момент изменяется по линейному зако-
ну. Задавая х1 значения, соответствующие границам участка, нахо-
дим Q и . 

1x
                = const = – 11 кН; 

1xM
1

                х
xQ
1 = 0:     = 0; 

1xM
                х1 = 1 м:   = –11 

1xM ×  1 = – 11 кН·м. 
Строим эпюры для первого участка, отмечая на них найденные 

значения Q  и (рисунок 1.17). 
1x 1x

Подобным образом проводим произвольное поперечное сечение 
в пределах второго расчетного участка на расстоянии х

M

2 от крайней 
левой точки О. Отбрасывая мысленно правую часть балки и рас-
сматривая силы, действующие на оставшуюся часть, составляем 
уравнения  и  для второго участка. 

2xQ
2xM
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ІІ участок: 1 м ≤ х2 ≤ 3 м. 
           =

2xQ   –F + Ву – p (х2 – 1) ; 

         = –F х
2xM 2 + Ву ( х2 – 1) – ( )

2
1 2

2 −xp  . 

На втором участке поперечная сила представляет линейную 
функцию, а изгибающий момент изменяется по квадратичной 
функции. Задавая х2 значения, соответствующие границам участка, 
находим  и . 

2xQ
2xM

 х2 = 1 м:     = – 11 + 29 = 18 кН; 
2xQ

 х2 = 3 м:     = – 11 + 29 – 10 
2xQ × 2 = – 2 кН; 

 х2 = 1 м:     = – 11 кН·м; 
2xM

 х2 = 3 м:   = – 11 
2xM ×  3 + 29 ×  2 – 10 ( )

2
13 2−  = 5 кН·м. 

Так как на втором участке поперечная сила  непрерывно 
убывает и происходит смена ее знака, то в сечении, где = 0, 
эпюра моментов  примет экстремальное значение, при вычис-
лении которого воспользуемся дифференциальной зависимостью 
между  и . Приравнивая к нулю выражение поперечной 
силы , находим расстояние х

2xQ

2xQ

2xM

2xQ
2xM

2xQ 2 до сечения с экстремальным зна-
чением изгибающего момента.  

2xQ  = – F + Ву – p (х2 – 1) = 0 , 

8,2
10

102911
2 =

++−
=

++−
=

q
pBF

x y  м. 

Подставив полученное значение х2 в уравнение моментов , 
находим величину экстремального изгибающего момента 

2xM

х2 = 2,8 м: = – 11 
2xM ×  2,8 + 29 (2,8 – 1) – 10 ( )

2
18,2 2−  = 5,2 кН·м. 

Строим эпюры для второго участка и отмечаем на них найден-
ные значения  и  (рисунок 1.17). 

2xQ
2xM

Проводим сечение в пределах третьего расчетного участка на 
расстоянии х3 от крайней правой точки балки. Рассматривая силы, 
действующие на правую часть балки, составляем уравнения и 

для третьего участка: 
3xQ

3xM
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             ΙΙΙ участок:  0 ≤ х3 ≤ 1 м. 
              = p x

3xQ 3 ; 

              = – p 
3xM

2

2
3x  . 

На третьем участке поперечная сила представляет линейную 
функцию, а изгибающий момент изменяется по квадратичной 
функции. Задавая х3 значения, соответствующие границам участка, 
находим Q и . 

3x 3x
х

M
3 = 0:       = 0; 

3xQ
х3 = 1 м:     = 10 кН; 

3xQ
х3 = 0:       = 0; 

3xM

х3 = 1 м:   = – 10 
3xM

2
12

 = – 5 кН·м. 

По вычисленным значениям строим эпюры 
3x  и 

3x  на 
третьем участке (рисунок 1.17). Поскольку эпюра поперечных сил 
на этом участке не изменяет знак, то изгибающий момент не будет 
принимать экстремального значения. 

Q M

Проводим сечение в пределах четвертого расчетного участка на 
расстоянии х4 от крайней правой точки балки. Рассматривая силы, 
действующие на правую часть балки, составляем уравнения  и 

 для четвертого участка. 
4xQ

4
              IV участок:  1 м ≤ х
xM

4 ≤ 2 м. 
              = – С

4xQ у + p× 1; 
             = С

4xM у ( x4 – 1) – p× 1 ( x4 – 0,5) . 
Из уравнений следует, что на четвертом участке поперечная сила 

постоянная, а изгибающий момент изменяется по линейному зако-
ну. Подставляя числовые значения х4 на границах участка, находим 

и . 
4
         Q  = const = – 12 + 10 = – 2 кН; 

xQ
4xM

4x
    x4 = 1 м:   = – 10 (1 – 0,5) = – 5 кН·м; 

4x
       x

M
4 = 2 м:   = 12 

4xM ×  1 – 10 (2 – 0,5) = – 3 кН·м. 
По полученным данным  и строим эпюры на четвертом 

участке (рисунок 1.17).  
4xQ

4xM

Контроль правильности построения эпюр с использованием об-
щих выводов, вытекающих из соотношений между нагрузкой, по-
перечной силой и изгибающим моментом, сущности метода сече-
ний, показывает, что эпюры Q и M построены верно.  

Подбираем поперечное сечение для заданной балки в виде дву-
тавра (рисунок 1.18). Для этого из условия прочности при изги-
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бе (1.12) находим величину требуемого осевого момента сопротив-
ления поперечного сечения. 

          [ ]
335

6

3
max ñì8,68ì1088,6

10160
1011

=×=
×

×
=

σ
= −M

Wz . 

 

 
 

Рисунок 1.18 – Поперечное сечение балки ― двутавр 
 

По сортаменту прокатной стали (сталь горячекатаная балки дву-
тавровые ГОСТ 8239-89) и Wz = 68,8 см3  выбираем двутавр № 14, 
у которого Wz = 81,7 см3 , I z = 572 см4 . 

Определяем перемещения, возникающие в сечениях балки. 
Для этого используем метод начальных параметров. Выберем на-
чало координат О в крайнем левом сечении балки, ось у направим 
вверх, ось х вправо (рисунок 1.17). Для определения начальных па-
раметров  и  используем граничные условия, вытекающее из 
расчетной схемы балки (рисунок 1.17), прогибы в сечениях В и С 
равны нулю (  = 0;  = 0). Принимая во внимание форму-
лу (1.20), составим уравнения прогибов для сечений В и С в виде: 

0y 0θ

Ây Cy

0
6

3

00 =−θ+= B
BzzBz

xFxIEyIEyIE , 

     
( ) ( )

( ) ( )
.0

24
3

24
1

6
1

62
3

44

332

00

=
−

+
−

−

−
−

+−
−

−θ+=

CC

C
y

CC
CzzCz

x
p

x
p

x
B

x
F

x
xIEyIEyIE m

  

Подставляя в уравнения прогибов для сечений В и С хВ = 1 м,  
хС = 4 м и значения внешних нагрузок, получаем  

0
6

1111
3

00 =−×θ+= zzBz IEyIEyIE , 
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( ) ( )

( ) ( ) .0
24

3410
24

1410

6
1429

6
41184

44

33

00
2
34 2

=
−

+
−

−

−
−

+−−×θ+=
−

zzCz IEyIEyIE
 

После вычислений имеем систему из двух уравнений с двумя 
неизвестными 

 
         ,                  0183,100 =−θ+= zzBz IEyIEyIE
        .  0166,24400 =−×θ+= zzCz IEyIEyIE
Решая полученную систему, находим величины , , 

а затем и начальные параметры  и .  
0yIE z 0θzIE

0y 0θ

0yIE z  = – 5,611 кН·м3,         = 7,444 кН·м0θzIE 2. 

ìì9,4ì0049,0
10572102

10611,5
811

3

0 −=−=
×××

×−
=

−
y , 

o0,37ðàä0065,0
10572102

10444,7
811

3

0 ==
×××

×
=θ

− .

Находим прогиб сечения балки на границе второго и третьего 
участков, когда  хD = 3 м. 
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00
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( ) ( ) 779,0

24
1310

6
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433

00 −=
−

−
−

+−×θ+= zzDz IEyIEyIE

кН·м3. 

ìì7,0ì0007,0
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811
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×−
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−Dy . 

Находим прогиб правого концевого сечения балки, для которого 
хK = 5 м. 
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ìì3,2ì0023,0
10572102

10642,2
811

3
−=−=

×××

×−
=

−Ky  . 

Используя формулу (1.21), определяем углы поворота сечений 
балки, приходящихся на опоры, для которых  хB = 1 м  и  хС = 4 м . 

.ìêÍ944,1
2

111444,7
2

2
22

0 ⋅=−=−θ=θ B
zBz

xFIEIE  

o0,1ðàä0017,0
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×
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+
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o0,07ðàä0012,0
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3
−=−=

×××

×−
=θ

−Ñ . 

Принимая во внимание найденные прогибы и углы поворота 
сечений, строим приближенную упругую линию балки (рису-
нок 1.17). 
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1.8 Пример решения задачи (рама) 
 

Построить эпюры внутренних силовых факторов для рамы, по-
казанной на рисунке 1.19. Подобрать размеры поперечного сечения 
элементов рамы, если оно имеет форму кольца (отношение внут-
реннего диаметра к наружному равно 0,8). Допускаемое напряже-
ние принять равным [σ] = 160 МПа. Собственным весом рамы пре-
небречь. 
Решение. Определяем реакции жесткой заделки, представленные 

на рисунке 1.19, составляющими Ву и Вх , mB .  На раму действует 
уравновешенная плоская система сил. Найдем неизвестные силовые 
факторы Ву, Вх, mB , составляя уравнения равновесия в виде суммы 
проекций сил на горизонтальную ось х, на вертикальную ось у и 
суммы моментов относительно точки В  

      Σ Fx = F – Bx = 0;   
        Σ Fу = Ву – p ×  2 = 0; 
        Σ mВ (Fi ) = – mВ + p ×  2 ×  3 – m – F ×  1,5 = 0.      
Откуда        
              Вх = F = 20 кН; 
        Ву = p ×  2 = 20 кН; 
             mВ = p ×  6 – m – F ×  1,5 = 60 – 15 – 18 = 27 кН·м.      
Для проверки правильности вычисления реакций заделки В со-

ставляем уравнение равновесия в виде суммы моментов относи-
тельно точки С и подставим их значения: 

 Σ mc (Fi ) = Ву ×  2 + Вх ×  0,5 – mВ – m – F ×  2 + p ×  2 ×  1 =  
= 20 ×  2 + 12 ×  0,5 – 27 – 15 – 12 ×  2 + 10 ×  2 ×  1 = 0.    
В результате расчета получили Σ mc (Fi ) = 0, что указывает на 

правильность определения реакций заделки В. 
Рама имеет четыре расчетных участка. На каждом расчетном 

участке проводим сечение и, рассматривая силы, действующие на 
оставшуюся часть, составляем уравнения для поперечных сил, из-
гибающих моментов и продольных сил, соблюдая соответствующие 
правила знаков. 
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Рисунок 1.19 – Расчетная схема и эпюры внутренних силовых факторов рамы 

 
Проводим сечение на первом участке на расстоянии х1 от жест-

кой заделки В и составляем уравнения для  , , . 
1xQ

1xM
1xN

І участок: 0 ≤ х1 ≤ 1 м. 
1x

 = – m
Q  = Ву сos α + Bx sin α ; 
1xM B + By х1 + Bx х1 tg α ; 

1
где α ― угол, который составляет ось элемента с горизонтальной 

осью, величина которого равна 

xN  = – Ву sin α + Bx сos α, 

°==α 6,26
1
5,0arctg . Из уравнений 

следует, что на первом участке поперечная и продольная силы посто-
янные, а изгибающий момент изменяется по линейному закону. Под-
ставляя числовые значения х1 на границах участка, получаем: 
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1xQ  = const = 26,236,26sin126,26cos20 =°+° кН; 
х1 = 0:     = – 27 кН·м; 

1xM

х1 = 1 м:   = – 27 + 20 
1xM ×  1 + 12 ×  1 ×  tg  = – 1 кН·м. °6,26

1xN  = const =  – 83,16,26cos126,26sin20 =°+° кН; 

Строим эпюры для первого участка, отмечая на них найденные 
значения  и ,  (рисунок 1.19). 

1xQ
1xM

1xN
Проводим сечение на втором участке на расстоянии х2 от жест-

кой заделки В и составляем уравнения для  , , . 
2xQ

2xM
2xN

             ІI участок: 1 м ≤ х2 ≤ 2 м. 
               = В

2xQ у ;     
              = – m

2xM B – m + By х2 + Bx ×  0,5 ; 
               = B

2xN x . 
Из уравнений следует, что на втором участке поперечная и про-

дольная силы постоянные, а изгибающий момент изменяется по ли-
нейному закону. Подставляя числовые значения х2 на границах уча-
стка, получаем 

2x
х
Q  = const = 20 кН; 
2 = 1 м:     = – 27 – 15 + 20 

2xM ×  1 + 12 ×  0,5 = – 16 кН·м; 
х2 = 2 м:     = – 27 – 15 + 20 

2xM ×  2 + 12 ×  0,5 = 4 кН·м. 

2xN  = const = 12 кН; 
Строим эпюры для второго участка, отмечая на них найденные 

значения  и ,  (рисунок 1.19). 
2xQ

2xM
2xN

Проводим сечение на третьем участке на расстоянии х3 от край-
него правого сечения и составляем уравнения для , , . 

3xQ
3xM

3xN
             ІII участок: 0 ≤ х3 ≤ 2 м. 
               = p х

3xQ 3 ;     

              = 
3xM

2

2
3xp−  ; 

               = 0
3xN  

Из уравнений следует, что на третьем участке поперечная сила 
представляет линейную функцию, изгибающий момент изменяется 
по квадратичной функции, а продольная сила равна нулю. Подстав-
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ляя числовые значения х3 на границах участка, получаем 
         х3 = 0:      = 0 ; 

3xQ

         х3 = 2 м:    = 10 
3xQ ×  2 = 20 кН ; 

         х3 = 0:      = 0; 
3xM

         х3 = 2 м:    = – 10 
3xM

2
22

 = – 20 кН·м. 

           = 0. 
3xN

Строим эпюры для третьего участка, отмечая на них найденные 
значения  и ,  (рисунок 1.19). 

3xQ
3xM

3xN
Проводим сечение на четвертом участке на расстоянии х4 от крайне-

го нижнего сечения и составляем уравнения для  , , . 
4xQ

4xM
4xN

             ІV участок: 0 ≤ х4 ≤ 2 м. 
               = – F

4xQ  ;     
              = F х

4xM 4 ; 
               = 0

4x
Из уравнений следует,  что на четвертом участке поперечная си-

ла постоянная, изгибающий момент изменяется по линейному зако-
ну, а продольная сила равна нулю. Подставляя числовые значения 
х

N  

4 на границах участка, получаем 
4xQ  = const = – 12 кН; 

х2 = 0:     = 0; 
4xM

х2 = 2 м:   = 12 
4xM ×  2 = 24 кН·м. 

4xN  = 0. 
Строим эпюры для четвертого участка, отмечая на них найден-

ные значения  и ,  (рисунок 1.19). 
4xQ

4xM
4xN

Контроль правильности построения эпюр с использованием об-
щих выводов, вытекающих из соотношений между нагрузкой, по-
перечной силой и изгибающим моментом, сущности метода сече-
ний, показывает, что эпюры Q и M построены верно. Для рам явля-
ется обязательной проверка равновесия узлов. Составляем уравне-
ния равновесия для узла C (рисунок 1.20):  

                    Σ Fx = – 20 + 20 = 0;   
              Σ Fу = 20 – 20 = 0; 
              Σ mС (Fi ) = 4 + 20 – 24 = 0.  
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Рисунок 1.20 – Узел рамы С 
Составляем уравнения равновесия для узла  D (рисунок 1.21):   
Σ Fx =  °−°− 6,26cos83,16,26sin26,23 + 12 = 0;   
Σ Fу =  °−° 6,26sin83,16,26cos26,23 – 20 = 0; 
Σ mD (Fi ) = – 1 – 15 + 16 = 0. 

 
Рисунок 1.21 – Узел рамы D 

 
Уравнения равновесия для узлов С и D удовлетворяются. Вы-

полненные проверки позволяют заключить, что все эпюры построе-
ны верно. 

Подбираем одинаковое поперечное сечение в виде кольца для 
всех элементов рамы. Для этого из условия прочности при изгибе 
(1.12), находим величину требуемого осевого момента сопротивле-
ния поперечного сечения. 
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Находим размеры поперечного сечения элементов рамы, имею-
щего форму кольца (рисунок 1.22). 
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В соответствии с нормальными линейными размерами 
(ГОСТ 6636-69 в ред. 1990 г.) принимаем  80 мм, 63 мм. =íd =âd

 
Рисунок 1.22 Поперечное сечение элементов рамы ― кольцо 

 
 

1.9 Расчетно-графическая работа (РГР) 
«Прямой поперечный изгиб» 

 
Для заданных схем балок и рам требуется: 

1 Построить эпюры внутренних силовых факторов; 
2 Подобрать размеры поперечного сечения, приняв форму для схем: 

№ 1 ― круг (материал ― дерево, [σ] = 10 МПа, Е = 1 ×  104 МПа); 
№ 2 ― два рядом стоящих  швеллера (ГОСТ 8240–89, матери-

ал ― сталь Ст3, [σ] = 160 МПа, Е = 2 ×  105 МПа); 
№ 3 ― двутавр ( ГОСТ 8239–89, материал ― сталь Ст3,  

[σ] = 160 МПа, Е = 2 ×  105 МПа); 
№ 4 ― кольцо с заданным соотношением  внутреннего диаметра 

к наружному 
í

â
d
dñ =  (материал ― сталь Ст3,  [σ] = 160 МПа,  

Е = 2 ×  105 МПа); 
№ 5 ― прямоугольник с заданным соотношением высоты попе-

речного сечения к ширине 
b
h  (материал ― сталь Ст3,  

[σ] = 160 МПа, Е = 2 ×  105 МПа); 
3 Для схем № 1 и № 3 определить прогибы на границах расчетных 
участков и построить приближенную изогнутую ось (упругую линию), 
для схемы № 3 определить углы поворота сечений на опорах. 

Исходные данные для выполнения РГР «Прямой поперечный из-
гиб» принять из рисунка 1.23 и таблицы 1.2. 
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Рисунок 1.23 – Схемы к РГР «Прямой поперечный изгиб» 
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Продолжение рисунка 1.23 
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Продолжение рисунка 1.23 
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Продолжение рисунка 1.23  
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Продолжение рисунка 1.23 
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Продолжение рисунка 1.23 
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Продолжение рисунка 1.23 
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Продолжение рисунка 1.23 
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Продолжение рисунка 1.23 
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Продолжение рисунка 1.23 
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Продолжение рисунка 1.23 
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Продолжение рисунка 1.23 
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Продолжение рисунка 1.23 
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Продолжение рисунка 1.23 

 48



 
 

Окончание рисунка 1.23 
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Таблица 1.2 – Числовые данные к РГР «Прямой поперечный изгиб» 
 

Размеры Нагрузки Соотношение размеров 
сечения 

№ 
строки a, м b, м c, м m, кН·м F, кН p, кН/м 

Кольцо, 

í

â
d
dñ =  

Прямо-
угольник, 

b
h  

1 2 1,2 0,8 10 22 18 0,9 2,0 
2 1,6 1,4 1 11 18 16 0,7 2,2 
3 1,2 2 0,8 12 20 15 0,5 2,4 
4 1,8 1,2 1 13 21 14 0,8 2,6 
5 1,5 1,1 1,4 14 22 13 0,6 2,8 
6 1,4 1,5 1,1 15 23 12 0,7 3,0 
7 1,3 1,5 1,2 10 24 11 0,8 2,1 
8 1,2 1,4 1,4 11 23 10 0,9 2,3 
9 1,3 1,7 1 12 22 11 0,7 2,5 
10 1,4 1,5 1,1 13 21 12 0,6 2,7 
11 1,5 1,3 1,2 14 20 13 0,8 2,9 
12 1,6 1,1 1,3 15 19 14 0,5 2,0 
13 1,7 1,2 1,1 16 18 15 0,9 2,2 
14 1,8 1,3 0,9 18 15 16 0,8 2,4 
15 1,9 1,1 1 19 12 17 0,6 2,6 
16 2 0,9 1,1 20 11 18 0,5 2,8 
17 1,9 1 1,1 10 14 19 0,7 3,0 
18 1,8 1,2 1 12 13 20 0,9 2,1 
19 1,7 1,4 0,9 14 12 18 0,5 2,3 
20 1,6 1,3 1,1 16 11 17 0,8 2,5 
21 1,5 1,2 1,3 18 10 16 0,6 2,7 
22 1,4 1,6 1 20 12 15 0,7 2,9 
23 1,3 1,8 0,9 22 11 14 0,9 2,0 
24 1,2 2 0,8 24 14 12 0,5 2,4 
25 1,1 1,8 1,1 21 13 10 0,8 2,6 
26 1 1,7 1,3 19 16 11 0,7 2,8 
27 1,2 1,4 1,4 17 15 12 0,9 3,0 
28 1,4 1,6 1 15 18 13 0,6 2,1 
29 1,6 1,1 1,3 13 17 14 0,5 2,3 
30 1,8 1 1,2 11 19 15 0,7 2,5 
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1.10 Методические указания для выполнения  
РГР «Прямой поперечный изгиб» 

 
 

1 Вычертить в масштабе схему балки (рамы), оставляя под ней 
место для эпюр внутренних силовых факторов.  

2 Показать реакции опор и обозначить их. 
3 Используя уравнения равновесия для балки (рамы), как пло-

ской системы, определить величину реакций опор, а также выпол-
нить проверку правильности их нахождения. 

4 Установить количество расчетных участков. Расчетным участ-
ком называется часть длины балки, в пределах которой внутренний 
силовой фактор изменяется по одному и тому же закону. Тогда гра-
ницами участков будут являться сечения, в которых изменяется ха-
рактер действующей нагрузки. 

5 Последовательно, для каждого расчетного участка схемы:  
― провести перпендикулярно оси х секущую плоскость, разделяю-
щую балку (раму) на две части. Расстояние до поперечного сечения, 
совпадающего с секущей плоскостью, отсчитывается от крайнего 
левого или правого сечения балки (для рамы это расстояние также 
может отсчитываться от крайнего верхнего или нижнего сечения) и 
обозначается  xi ( i ― порядковый номер расчетного участка); 
― составить уравнение поперечной силы, произвести ее расчет и 
построить эпюру поперечных сил Q ; 
― составить уравнение изгибающего момента, произвести его рас-
чет и построить эпюру изгибающих моментов М ; 
― составить уравнение продольной силы, произвести ее расчет и 
построить эпюру продольных сил N . 

6 Проверить правильность построения эпюр Q и М, используя 
следствия, вытекающие из соотношений между нагрузкой, попе-
речной силой и изгибающим моментом, сущности метода сечений. 
Для рам также проверить равновесие всех узлов. 

7 Используя условие прочности при изгибе, подобрать размеры 
поперечного сечения балки (элементов рамы). 

8 Применяя метод начальных параметров, определить прогибы и 
углы поворота в требуемых сечениях балок. 
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2 КОСОЙ ИЗГИБ 
 
Литература: [1, С. 173–76], [2, С. 404–423], [3, 7, задачи  

№ 10.5, 10.6, 10.7, 10.16, 10.21]. 
Косой изгиб, основные понятия. Нормальные напряжения в по-

перечных сечениях бруса. Нахождение опасного сечения. Положе-
ние нейтральной оси и опасных точек в поперечном сечении. Усло-
вие прочности. Определение размеров поперечного сечения бруса. 
Перемещения при косом изгибе. 

 
2.1 Основные понятия. Нормальные напряжения в поперечных  

сечениях бруса. Условие прочности 
 

Косым изгибом называется такой вид изгиба, при котором след 
плоскости изгибающего момента не совпадает ни с одной из глав-
ных центральных осей инерции поперечного сечения.  

Косой изгиб может быть плоским и пространственным. При 
плоском косом изгибе все внешние силы располагаются в одной 
плоскости, которая проходит через ось бруса. В этом случае след 
плоскости изгибающего момента (силовой плоскости) образует по 
всей длине бруса постоянный угол α  с его главной центральной 
плоскостью (рисунок 2.1), а упругая линия бруса будет представ-
лять плоскую кривую линию.  

 

 
Рисунок 2.1 – Плоский косой изгиб 

 
При пространственном косом изгибе внешние силы располага-

ются в разных плоскостях ( , , ), проходящих через ось 
бруса (рисунок 2.2). В этом случае след плоскости изгибающего 
момента (силовой плоскости) в каждом поперечном сечении бруса 
образует с его главной центральной осью свой угол 

pα Fα mα

α , а упругая 
линия бруса будет представлять пространственную кривую линию.  
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Рисунок 2.2 – Пространственный косой изгиб 
 
При расчетах на прочность и жесткость как плоский, так и про-

странственный косой изгиб приводится к двум изгибам в главных 
центральных плоскостях инерции бруса. 

Рассмотрим балку прямоугольного поперечного сечения, нагру-
женную силой F, линия действия которой составляет с главной цен-
тральной осью z угол  (рисунок 2.3). Пускай в поперечном сече-
нии балки на расстоянии х от крайнего левого сечения действует 
изгибающий момент равный 

Fα

                         xFM −= .                                        (2.1) 
Спроектируем все действующие на балку внешние силы в глав-

ную центральную плоскость уох и составляем расчетную схему  
(рисунок 2.3). 

                       .                                     (2.2) Fy FF α= sin

В поперечном сечении балки на расстоянии х от крайнего левого 
сечения действует изгибающий момент относительно оси z равный 

               ,                     (2.3) α=α−=−= sinsin MxFxFM Fyz

где  – угол, который составляет след силовой плоскости (плоско-
сти действия полного изгибающего момента M) с главной цен-
тральной осью инерции z. 

α

В рассматриваемом случае плоского косого изгиба угол α  равен 
углу . Fα

Используя уравнение (2.3), строится эпюра  (рисунок 2.3). zM
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Рисунок 2.3 – Общий вид, расчетные схемы балки и эпюры  
изгибающих моментов 

 
Спроектируем все действующие на балку внешние силы в глав-

ную центральную плоскость zох и составляем расчетную схему  
(рисунок 2.3). 
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                       .                                     (2.4) Fz FF α= cos

В поперечном сечении балки на расстоянии х от крайнего левого 
сечения действует изгибающий момент относительно оси y равный 

               .             (2.5) α=α−=−= coscos MxFxFM Fzy

В рассматриваемом случае плоского косого изгиба угол α  равен 
углу . Fα

Используя уравнение (2.5), строится эпюра (рисунок 2.3). yM
Разделив уравнение (2.5) на (2.3), получим угол, который со-

ставляет след плоскости действия полного изгибающего момента M 
с главной центральной осью инерции z 

                          
z

y

M
M

=αctg  .                                           (2.6) 

При расчетах на прочность элементов конструкций, испыты-
вающих косой изгиб рассматривают только нормальные напряже-
ния, а влиянием касательных напряжений, как и при прямом изгибе, 
пренебрегают.  

Нормальное напряжение в произвольной точке поперечного сече-
ния балки согласно принципу независимости действия сил определя-
ется как алгебраическая сумма напряжений от изгибающих моментов 
относительно главных центральных осей инерции  и . zM yM

yz MM σ±σ±=σ . 

                 z
I

M
y

I
M

y

y

z

z ±±=σ .                                  (2.7) 

При расчете нормальных напряжений все величины подставля-
ются в правую часть выражения (2.7) по модулю, а знаки перед ка-
ждым из двух слагаемых ставятся с учетом растяжения или сжатия 
в рассматриваемой точке (растяжение ― «+», сжатие ― «–»), обу-
словленного соответствующим изгибающим моментом. Так, для 
показанной на рисунке 2.3 схемы нагружения бруса, продольные 
волокна, расположенные выше оси z , как видно из эпюры , ис-
пытывают сжатие, ниже оси z ― растяжение, а продольные волок-
на, расположенные справа от оси у, как видно из эпюры , испы-
тывают сжатие, слева оси у ― растяжение. Тогда напряжение в 

zM

yM
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точке B (z; y), принадлежащей первому квадранту поперечного се-
чения балки, можно найти по формуле (2.7), поставив перед каж-
дым слагаемым в правой части знак «+»: 

                z
I

M
y

I
M

y

y

z

z +=σ .                                (2.8) 

Из формулы (2.7) видно, что нормальные напряжения в некото-
рых точках поперечного сечения балки, испытывающей косой из-
гиб, равны нулю. Эти точки располагаются на прямой линии, про-
ходящей через начало координат (центр тяжести), называемой ней-
тральной осью. Приравнивая выражение (2.8) к нулю, получаем 
уравнение нейтральной оси в виде 

                z
I
Iy

y

zα−= ctg .                                    (2.9) 

Поскольку нейтральная ось проходит через начало координат, то 
ее уравнение часто бывает удобным представлять следующим вы-
ражением  

                
y

z
I
I

α−=β ctgtg ,                               (2.10) 

где  ― угол, который составляет нейтральная ось с главной цен-
тральной осью инерции z (рисунок 2.4). 

β

 
 

Рисунок 2.4 – След действия М и нейтральная ось  
в поперечном сечении бруса 

 
Из анализа уравнений (2.9) и (2.10) следует, что положение ней-

тральной оси вдоль оси бруса постоянного поперечного сечения: 
― при плоском косом изгибе остается постоянным так как       
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z

y

M
M

=αctg  = const; 

― при пространственном косом изгибе изменяется в соответствии с 

изменением отношения изгибающих моментов  
z

y

M
M

. 

Нейтральная ось в поперечном сечении бруса при косом изгибе 
не перпендикулярна следу полного изгибающего момента. Она от-
клоняется от перпендикуляра к следу полного изгибающего момен-
та к главной центральной оси  инерции сечения, относительно ко-
торой момент инерции минимальный. По мере удаления точки от 
нейтральной оси нормальное напряжение в ней линейно возрастает 
(рисунок 2.5). Наибольшие растягивающие и сжимающие напряже-
ния возникают в точках наиболее удаленных от нейтральной оси по 
разные от нее стороны. Причем в одной опасной точке возникает 
наибольшее растягивающее напряжение , а в другой – наи-
большее сжимающее напряжение .  

maxσ

minσ

             
 

Рисунок 2.5 – Эпюра нормальных напряжений 
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При косом изгибе напряженное состояние в опасной точке при-
нимается линейным, и расчет на прочность производится по нор-
мальным напряжениям, возникающим в поперечном сечении бруса, 
где изгибающие моменты имеют наибольшие значения. Если 

 и действуют в разных сечениях бруса, то расчет на 
прочность проводится для двух предположительно опасных сече-
ний, в одном из которых действуют и , а в другом ―  

 и . 

maxzM maxyM

maxzM yM

zM maxyM
Условия прочности при косом изгибе для заданной схемы на-

гружения бруса можно записать в виде следующих соотношений: 

      ( ) [ p111max σ≤+=σ=σ z
I

M
y

I
M

y

y

z

z ];                (2.11) 

     ( ) [ c222min σ≤−−=σ=σ z
I

M
y

I
M

y

y

z

z ] .               (2.12) 

Если материал одинаково сопротивляется растяжению и сжатию, 
то при оценке прочности достаточно обеспечить выполнение одно-
го условия, в котором будет использовано наибольшее по абсолют-
ной величине напряжение. Для сечений с двумя осями симметрии и 
выступающими угловыми точками условие прочности можно запи-
сать в виде: 

            [ pmax σ≤+=σ
y

y

z

z
W
M

W
M ] .                   (2.13) 

Направление полного прогиба сечения бруса, испытывающего 
косой изгиб, не совпадает со следом действия полного изгибающего 
момента М и перпендикулярно нейтральной оси. 

 
2.2 Пример решения задачи 

 
Балка прямоугольного поперечного сечения (h× b = 0,3× 0,2 м) 

нагружена сосредоточенной силой F, равномерно распределенной 
нагрузкой интенсивностью Р и моментом в виде пары сил m (рису-
нок 2.6). Определить положение опасного сечения балки, провести 
в нем нейтральную ось, найти нормальные напряжения в опасных 
точках, а также в выступающих угловых точках опасного сечения и 
построить эпюры нормальных напряжений по сторонам этого  
сечения. 
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Решение. Проведем для поперечных сечений балки главные цен-
тральные оси инерции y, z, а ось х совместим с осью балки (рисунок 2.6).  

Спроектируем силы, действующие на балку, в главную цен-
тральную плоскость инерции yox. 

 
 

 
 

Рисунок 2.6 – Расчетные схемы и эпюры изгибающих моментов балки 
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Fу = F = 5 кН ; 
ìêÍ276,1120cos12cos ⋅=°=α= mz mm . 

Составляем расчетную схему балки, нагруженной внешними си-
лами в плоскости yox и соответственно изгибающими ее относи-
тельно оси z (рисунок 2.6). Для нахождения неизвестных реакций 
опор Ву и Су используем уравнения равновесия. Реакции опоры Вх 
равны нулю, так как все силы, действующие на балку, перпендику-
лярны оси х. 

Σ mc (Fi ) = –Ву ×  4,8 + mz – Fy ×  1,3 = 0; 

Σ mВ (Fi ) = –Су ×  4,8 + mz + Fу ×  3,5 = 0; 

Решая уравнения равновесия, находим реакции опор 

8,4
3,15276,11

8,4
3,1 ×−
=

×−
= yz

y
Fm

B = 0,995 кН, 

=×+=
×+

=
8,4

5,35276,11
8,4

5,3yz
y

Fm
C 5,995 кН. 

Для проверки правильности определения реакций опор составим 
не использованное в этой задаче уравнение равновесия в виде сум-
мы проекций сил на ось у и подставим их значения: 

Σ Fу = –Ву + Cу – Fу = – 0,995 + 5,995 – 5 = 0. 

В результате расчета получили Σ Fу = 0, что указывает на пра-
вильность определения реакций опор. 

Разбиваем балку на три расчетных участка и находим значения 
изгибающего момента Мz. 
Ι участок: 0 ≤ х1 ≤ 1,5 м. 

1xM = –Ву  х1 ; 
х1 = 0:       = 0; 

1xM

х1 = 1,5 м: = –0,995 
1xM ×  1,5 = –1,493 кН·м. 

ІІ участок: 1,5 м ≤ х2 ≤ 3,5 м. 

2xM = –Ву  х2 + m; 

х2 = 1,5 м:    = –0,995 
2xM ×  1,5 + 11,276 = 9,783 кН·м; 

х2 = 3,5 м:   = –0,995 ×  3,5 + 11,276 = 7,794 кН·м. 
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IІІ участок: 0 ≤ х3 ≤ 1,3 м. 

3xM  = Су х2 ;. 
х3 = 0:  = 0; 

3xM

х3 = 1,3 м:  = 5,995 
3xM ×  1,3 = 7,794 кН·м. 

По найденным значениям изгибающего момента строим эпюру 
Мz (рисунок 2.6).  

Спроектируем силы, действующие на балку, в главную цен-
тральную плоскость инерции zox. 

ìêÍ104,420sin12sin ⋅=°×=α= my mm . 

Составляем расчетную схему балки, нагруженной внешними си-
лами в плоскости zox и соответственно изгибающими ее относи-
тельно оси y (рисунок 2.6). Для нахождения неизвестных реакций 
опор Вz и Сz составим уравнения равновесия. Составляющая реак-
ции опоры в шарнире В равна нулю, так как силы, действующие на 
балку, перпендикулярны оси х.  

Σ mc (Fi ) = –Вz ×  4,8 – my + p ×  2 ×  2,3 = 0; 
Σ mВ (Fi ) = –Сz ×  4,8 + my + p ×  2 ×  2,5 = 0. 

Решая уравнения равновесия, находим реакции опор 

728,88,4
3,2210104,4

8,4
3,22

=××+−=
××+−

=
pm

B y
z кН, 

272,11
8,4

5,2210104,4
8,4

5,22
=××+=

××+
=

pm
C y

z кН. 

Для проверки правильности определения реакций опор составим 
не использованное в этой задаче уравнение равновесия в виде сум-
мы проекций сил на ось z и подставим их значения: 

Σ Fz = –Вz + p ×  2 − Cz = – 8,728 + 20 − 11,272 = 0. 
В результате расчета получили Σ Fz = 0, что указывает на пра-

вильность определения реакций опор. 
Разбиваем балку на три расчетных участка и находим значения 

изгибающего момента относительно оси y  Мy. 
Ι участок: 0 ≤ х1 ≤ 1,5 м. 

1xM = –Вz х1 ; 
х1 = 0:       = 0; 

1xM

х1 = 1,5 м:   = –8,728 
1xM ×  1,5 = –13,093 кН·м. 
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ІІ участок: 0 ≤ х2 ≤ 1,3 м. 

2xM  = −Сz х2 ; 
х2 = 0:      = 0; 

2xM

х2 = 1,3 м:   = −11,272 
2xM ×  1,3 = 14,654 кН·м. 

ІІI участок: 1,3 м ≤ х3 ≤ 3,3 м. 

3xM  = −Сz х3 + ( )
2

3,1 2
3 −xp ; 

х3 = 1,3 м:  = −11,272 
3xM ×  1,3 = 14,654 кН·м ; 

х3 = 3,3 м:  = −11,272 
3xM ×  3,3 + 10 ( )

2
3,13,3 2−  = 17,197 кН·м. 

На третьем расчетном участке изгибающий момент Мy имеет 
экстремальное значение. Для его определения составим и прирав-
няем к нулю выражение поперечной силы 

3x , а также найдем рас-
стояние х

Q
3 до сечения с экстремальным значением изгибающего 

момента.  

3xQ  = Сz − p (x3 − 1,3) = 0, 
откуда 

х3 = 
10

103,1272,11 ×+  = 2,427 м. 

Подставив полученное значение х3 в уравнение моментов , 
найдем величину искомого экстремального момента 

3xM

3xM = −11,272 ×  2,427 + 10 ( )
2

3,1427,2 2−  = −21,006 кН·м. 

По найденным значениям изгибающего момента строим эпюру 
Мy (рисунок 2.6).  

Находим положение опасного сечения балки. Как показывают 
эпюры изгибающих моментов Мz и Мy , опасное сечение может рас-
полагаться на расстоянии 1,5 м от точки В ( = 9,783 кН·м; МmaxzM y 
= 17,197 кН·м) или на расстоянии 2,427 м от точки С (Мz = 
5,995× 2,427 –5(2,427–1,3) = 8,915 кН·м; = 21,006 кН·м). Оп-
ределяем величину максимального напряжения в этих сечениях по 
формуле: 

maxyM
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y

y

z

z
W
M

W
M

+=σmax , 

где Wz и Wy − момент сопротивления поперечного сечения относи-
тельно, соответственно, осей z и y. 

3
22

ì003,0
6

3,02,0
6

=
×

==
hbWz ; 

3
22

ì002,0
6

2,03,0
6

=
×

=
⋅

=
bhWy . 

Тогда      

   ÌÏà9,11
ì
Í10191

002,0
10197,17

003,0
10783,9

2
5

33

max =×=
×

+
×

=σ I ; 

  ÌÏà5,13
ì
Í10351

002,0
10006,21

003,0
10915,8

2
5

33

max =×=
×

+
×

=σ II . 

Значит, опасным сечением является сечение II, так как  > 
. 

II
maxσ

I
maxσ
Определяем в опасном сечении балки положение нейтральной 

оси 

302,5
2,0
3,0

915,8
006,21

12
12ctgtg 2

2

3

3
=×

−
−=−=α−=β

bh
hb

M
M

I
I

z

y

y

z . 

°==β=β 3,79302,5arctgarctg  . 
Откладываем от оси z против хода часовой стрелки угол β и про-

водим нейтральную ось (рисунок 2.7). Опасными точками будут 
точки опасного поперечного сечения, наиболее удаленные от ней-
тральной оси, т.е. точки 1 и 3. 

Исходя из растяжения или сжатия, обусловленных изгибающими 
моментами Мz и Мy, расставляем для каждого квадранта опасного 
поперечного сечения знаки напряжений (рисунок 2.7), где верхние 
знаки ― для напряжений от Мz , нижние знаки ― для напряжений 
от Мy . Находим нормальные напряжения в опасных точках, а также 
в выступающих угловых точках опасного сечения по формуле: 

y

y

z

z
W
M

W
M

±±=σ  . 
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Рисунок 2.7 – Нейтральная ось и знаки напряжений в опасном сечении балки 

 
При выполнении расчетов величины изгибающих моментов Мz и 

Мy принимаем по модулю.  

  ( ) ÌÏà5,13
ì
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По найденным значениям строим эпюры нормальных напряже-
ний по сторонам опасного сечения балки (рисунок 2.8).  
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Рисунок 2.8 – Эпюры нормальных напряжений по сторонам  
опасного сечения балки 

                      
Из эпюр, показанных на рисунке 2.8, видно, что в точках, в кото-

рых нейтральная ось пересекает контур сечения, нормальные на-
пряжения равны нулю.  

 
2.3 Расчетно-графическая работа (РГР) 

«Косой изгиб» 
 

Для заданной балки, нагруженной сосредоточенной силой F, 
равномерно распределенной нагрузкой интенсивностью Р и момен-
том в виде пары сил  m, как показано на рисунке 2.9, требуется: 

1 Определить положение опасного сечения балки; 
2 Провести в опасном сечении балки нейтральную ось и найти 

опасные точки; 
3 Определить нормальные напряжения в опасных точках, а так-

же в выступающих угловых точках опасного сечения и построить 
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эпюры нормальных напряжений по сторонам этого сечения. 
Исходные данные для выполнения РГР «Косой изгиб» принять 

из рисунка 2.9 и таблицы 2.1 (двутавр ГОСТ 8239-89, швеллер 
ГОСТ 8240-89). 

 
2.4 Методические указания для выполнения  

РГР «Косой изгиб» 
 

1 Вычертить в масштабе схему балки, оставляя под ней место 
для других схем и эпюр внутренних силовых факторов.  

2 Провести и обозначить в поперечном сечении балки главные 
центральные оси инерции  z и у, ось х совместить с осью балки. 

3 Составить расчетную схему балки, нагруженной внешними си-
лами в главной центральной плоскости  уох. 

4 Построить эпюру изгибающих моментов относительно оси z (Mz). 
5 Составить расчетную схему балки, нагруженной внешними си-

лами в главной центральной плоскости  zох. 
6 Построить эпюру изгибающих моментов относительно оси y (My). 
7 Определить положение опасного сечения балки (опасное сече-

ние − поперечное сечение, в котором находится опасная точка бал-
ки, т.е. точка, в которой действует максимальное нормальное на-
пряжение σmax). 

8 В опасном сечении балки провести нейтральную ось и устано-
вить положение опасных точек. 

9 Определить нормальные напряжения в опасных точках. 
10 Определить нормальные напряжения в выступающих угловых 

точках опасного сечения балки. 
11 Построить эпюры нормальных напряжений по сторонам 

опасного сечения балки. 
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Рисунок 2.9 – Схемы к РГР «Косой изгиб» 
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Продолжение рисунка 2.9 
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Продолжение рисунка 2.9 
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Продолжение рисунка 2.9 
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Продолжение рисунка 2.9 
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Окончание рисунка 2.9 

Таблица 2.1 – Числовые данные к РГР «Косой изгиб» 
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Размеры Нагрузки Форма и размеры поперечного сечения 

Прямо- 
угольник 

Дву-
тавр

Швел
лер 

Труба 
прямоугольная 

 
№ 

строки a, м b, м c, м m, 
кН·м F, кН p, 

кН/м
h, м b, м № 

проф
№ 

проф h, м b, м t, м 
1 1 1,7 1,3 17 14 10 0,30 0,14 30а 33 0,32 0,16 0,02 
2 1,2 1,4 1,4 15 13 11 0,28 0,15 30 30 0,31 0,15 0,02 
3 1,4 1,6 1 13 16 12 0,26 0,16 27а 27 0,30 0,14 0,02 
4 1,6 1,1 1,3 11 15 13 0,24 0,17 27 24а 0,29 0,15 0,02 
5 1,8 1 1,2 9  17 14 0,22 0,16 24а 24 0,28 0,16 0,02 
6 1,4 1,5 1,1 13 21 12 0,20 0,16 24 22а 0,27 0,17 0,02 
7 1,3 1,5 1,2 8  18 11 0,22 0,18 22а 22 0,26 0,18 0,02 
8 1,2 1,4 1,4 9  21 10 0,24 0,16 22 20а 0,25 0,18 0,02 
9 1,3 1,7 1 10 20 11 0,26 0,18 20а 20 0,24 0,19 0,02 

10 1,4 1,5 1,1 11 19 12 0,28 0,20 20 27 0,23 0,20 0,02 
11 2 0,9 1,1 15 10 16 0,30 0,18 27а 24а 0,34 0,14 0,01 
12 1,9 1 1,1 8 12 17 0,29 0,16 27 24 0,33 0,15 0,01 
13 1,8 1,2 1 10 11 15 0,27 0,22 24а 22а 0,32 0,16 0,01 
14 1,7 1,4 0,9 12 10 16 0,25 0,18 24 22 0,31 0,17 0,01 
15 1,6 1,3 1,1 14 13 15 0,23 0,16 22а 20а 0,30 0,18 0,01 
16 1,5 1,2 1,3 16 10 14 0,21 0,16 22 20 0,29 0,19 0,01 
17 1,4 1,6 1 15 12 13 0,22 0,17 30 33 0,28 0,20 0,01 
18 1,3 1,8 0,9 20 11 14 0,24 0,18 27а 30 0,27 0,21 0,01 
19 1,2 2 0,8 18 12 11 0,26 0,17 27 27 0,26 0,22 0,01 
20 1,1 1,8 1,1 19 13 10 0,28 0,15 24а 24а 0,25 0,20 0,01 
21 2 1,2 0,8 10 17 16 0,30 0,19 24 24 0,28 0,14 0,03 
22 1,6 1,4 1 11 16 14 0,30 0,21 22а 33 0,27 0,15 0,03 
23 1,2 2 0,8 12 18 12 0,29 0,16 30а 30 0,26 0,16 0,03 
24 1,8 1,2 1 13 19 13 0,28 0,15 30 27 0,25 0,17 0,03 
25 1,5 1,1 1,4 12 20 12 0,27 0,18 27а 24а 0,24 0,18 0,03 
26 1,5 1,3 1,2 13 18 11 0,26 0,15 27 24 0,23 0,17 0,03 
27 1,6 1,1 1,3 14 17 14 0,25 0,14 24а 22а 0,22 0,16 0,03 
28 1,7 1,2 1,1 15 16 12 0,24 0,16 22а 22 0,21 0,15 0,03  
29 1,8 1,3 0,9 16 15 11 0,22 0,14 22 20а 0,20 0,16 0,03 
30 1,9 1,1 1 17 12 13 0,26 0,16 30 20 0,24 0,26 0,03 
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3 РАСЧЕТ ПЛОСКОЙ СТАТИЧЕСКИ  
НЕОПРЕДЕЛИМОЙ РАМЫ МЕТОДОМ СИЛ 

 
Литература: [1], [2, С. 474–517], [3, 9.37, 9.43]. 
Статически неопределимые системы, основные понятия. Сте-

пень статической неопределимости, внутренние связи, внешние 
связи. Метод сил, основная система, эквивалентная система. Кано-
нические уравнения метода сил, коэффициенты канонических 
уравнений. Статическая проверка, деформационная проверка. Оп-
ределение размеров поперечного сечения. 

  
3.1 Основные понятия 

 
Системы, в которых опорные реакции и внутренние силовые фак-

торы не могут быть определены с помощью уравнений статики и ме-
тода сечений, называются статически неопределимыми. Для прочно-
стного расчета таких систем необходимо составить дополнительные 
уравнения, которые называются уравнениями перемещений.  

Статически неопределимые системы позволяют за счет более 
рационального распределения усилий по элементам конструкции 
достигать значительной экономии материала. Дополнительные свя-
зи увеличивают жесткость конструкции и при нарушении любой 
связи предохраняют ее от разрушения. 

Степенью статической неопределимости системы называется раз-
ность между числом наложенных связей и числом независимых урав-
нений равновесия, которые можно составить для данной системы. 

Для определения числа дополнительных связей с помощью ки-
нематического анализа необходимо вычесть из общего числа степе-
ней свободы системы число внешних опорных и внутренних связей, 
налагаемых на движение элементов системы. 

Число степеней свободы для плоской системы равно: 

                          Во CCDH −−= 3 ,                                  (3.1)  

где D – число стержней, образующих систему; 
Св – число внутренних связей; 
Со – число внешних, опорных связей. 

Возможны три варианта: 
1) Н > 0 – система кинематически изменяема и не применяется в 

качестве инженерного сооружения; 
2) Н = 0 – система статически определима; 
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3) Н < 0 – система статически неопределима, имеет дополни-
тельные (лишние) связи. 

При расчете Св следует учитывать, что каждый шарнир, соеди-
няющий два элемента, накладывает две внутренние связи. Добавле-
ние стержня в шарнирный узел увеличивает число внутренних свя-
зей на две (рисунок 3.1). 

 

 
Рисунок 3.1 – Шарнирное соединение стержней 

 
Неподвижное соединение двух элементов в узле эквивалентно 

трем внутренним связям (рисунок 3.2).  
 

 
 

Рисунок 3.2 – Неподвижное соединение стержней 
 

Между стержнями-элементами связей нет (рисунок 3.3). 
 

 
Рисунок 3.3 – Деление конструкции на элементы 

 
В данном случае система разделяется на три элемента. Первый 

элемент представляет собой изогнутый стержень. Число внутрен-
них связей равно 12.  

В плоской системе шарнирно-подвижная опора налагает одну 
внешнюю связь, шарнирно-неподвижная опора – две внешние свя-
зи, заделка – три. 
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Суть метода сил заключается в том, что статически неопредели-
мая система путем освобождения от дополнительных (лишних) свя-
зей превращается в статически определимую, геометрически неиз-
меняемую. Действие отброшенных связей заменяется неизвестными 
силами и моментами. Их величины подбираются так, чтобы пере-
мещения в системе оставались такими же, что и при наличии до-
полнительных связей. Таким образом, неизвестными при этом спо-
собе являются силы. Откуда и происходит название «метод сил».  

Расчет начинается с выбора основной системы. Основной систе-
мой является статически определимая, кинематически неизменяе-
мая система, получаемая из заданной в результате освобождения ее 
от дополнительных связей. Основная система, к которой приложе-
ны все внешние нагрузки и неизвестные силы, заменяющие отбро-
шенные связи, называется эквивалентной. 

При рассмотрении перемещений в эквивалентной системе со-
ставляются уравнения перемещений, которые называются канони-
ческими уравнениями метода сил. При Н = – 2 они имеют вид: 

                                                    (3.2) 
⎩
⎨
⎧

=∆+δ+δ
=∆+δ+δ

.0
0

1222121

1212111

F

F

XX
ÕÕ

Канонические уравнения выражают условия равенства нулю 
суммарных перемещений по направлению каждой из отброшенных 
связей. Их можно составить столько, сколько раз статически неоп-
ределима система.  

Коэффициенты при неизвестных силах представляют собой пе-
ремещения в основной системе, вызванные единичными силами, 
заменяющими неизвестные силы. Перемещения с одинаковыми ин-
дексами 11 , 22  называются главными коэффициентами канони-
ческих уравнений. Они всегда положительны и не равны нулю. Пе-
ремещения с разными индексами называются побочными коэффи-
циентами канонических уравнений и могут быть положительными, 
отрицательными и равными нулю. Чем больше этих коэффициентов 
равно нулю, тем рациональнее выбрана основная система. Согласно 
теореме о взаимности перемещений эти коэффициенты попарно 
равны, т.е. . 

δ δ

2112
Свободные члены уравнений, обозначенные буквой 

δ=δ
∆ , пред-

ставляют перемещения в основной системе под действием задан-
ных внешних сил. 

Коэффициенты и свободные члены канонических уравнений опре-
деляются с помощью интегралов Максвелла-Мора или способа Вере-
щагина путем перемножения эпюр. Индексы указывают, какие эпюры 
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должны быть перемножены. После их определения решается система 
канонических уравнений, и определяются неизвестные силы.  

К основной системе с учетом знаков прикладываются найденные 
силы и заданные нагрузки. Обычным способом (как для статически 
определимой рамы), строятся суммарные эпюры внутренних сило-
вых факторов M, Q, N.  

После построения суммарной эпюры изгибающих моментов 
проводятся проверки: 

1) статическая, которая заключается в проверке равновесия каж-
дого вырезанного из рамы узла под действием внешних сил и внут-
ренних силовых факторов. 

2) деформационная, которая заключается в определении пере-
мещений в системе по направлению лишних связей. Так как в экви-
валентной системе перемещение по направлению лишней связи 
должно отсутствовать, то произведение окончательной эпюры из-
гибающих моментов на каждую из единичных эпюр должно рав-
няться нулю.  

Для определения погрешности вычислений необходимо найти 
суммы положительных и отрицательных членов. Разность этих 
сумм в процентах от меньшей из них не должна превышать 2%.  

По наибольшему значению изгибающего момента на эпюре нахо-
дится опасное сечение. Для него по условию прочности при изгибе  

                [ ]σ≤=σ
zW

M max
max   ⇒ [ ]σ= maxMWz                     (3.3) 

подбираются размеры поперечного сечения или номер прокатного 
профиля. 

В рамах в поперечном сечении кроме изгибающего момента 
действует продольная сила, которая вызывает в сечении нормаль-
ные напряжения. Поэтому необходимо выполнить проверку с уче-
том продольной силы: 

                       [ ]σ≤+=σ
A
N

W
M

z

max
max ,                              (3.4) 

где N – продольная сила в опасном сечении. 
Если max  отличается от σ [ ]σ  не более чем на 5%, расчет счита-

ется законченным. 
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3.2 Пример решения задачи 
Для заданной рамы (рисунок 3.4) построить эпюры внутренних сило-

вых факторов и подобрать размеры поперечного сечения прямоугольни-
ка, если отношение высоты к ширине равно 
2. Принять [σ] 160= МПа, a = 1 м, b = 1 м, c 
= 1,8 м, F = 15 кН, q = 10 кН/м.  
Решение. Вычерчиваем в масштабе схе-
му рамы и прикладываем к ней внешние 
нагрузки (рисунок 3.5, а). 

 
 

Рисунок 3.4 – Расчетная схема рамы 

 
Рисунок 3.5 – Расчетные схемы и эпюры изгибающих моментов: 

а – заданная схема; б – основная система; в – эквивалентная система; г – схема для 
построения грузовой эпюры; д – грузовая эпюра; е – схема для построения единичной 
эпюры М1; ж – единичная эпюра М1; з – схема для построения единичной эпюры М2; 

 и – единичная эпюра М2
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Система состоит из одного элемента – изогнутого стержня, поэтому 
внутренние связи отсутствуют. В заделке возникают три опорные ре-
акции, в шарнирно-неподвижной опоре – две. 

Определяем степень статической неопределимости: 
205133 −=−−×=−−= Âî CCDH . 

Следовательно, система дважды статически неопределимая. 
В ней можно отбросить две дополнительные связи, обозначив их Х1 
и Х2. Для нее можно составить два канонических уравнения, построить 
две единичные эпюры.  

Выбираем основную и эквивалентную системы (рисунок 3.5, б, в). 
Составляем канонические уравнения метода сил: 

⎩
⎨
⎧

=∆+δ+δ
=∆+δ+δ

.0
0

1222121

1212111

F

F

XX
ÕÕ

 

Прикладываем к основной системе заданные нагрузки (рисунок 3.5, 
г) и определяем опорные реакции с помощью уравнений статики: 

∑ = 0xF ;   ;     кН. 08,1 =×− qBx 18=xB

∑ = 0yF ;   ;   кН. 0=− FBy 15=yB

∑ = 0BÌ ;  ; 09,08,11 =××−×− qFM B

2,319,08,11015 =××+=BM кН·м. 
Разбиваем раму на участки и записываем уравнения изгибающих 

моментов на каждом из них: 
I участок: м. 8,10 1 ≤≤ x

2

2

1

qxM X −= ; 

01 =x ; ;     0
1
=XM

8,11 =x м;   2,16
2

8,110 2

1
−=

×
−=XM кН·м. 

II участок: м. 10 2 ≤≤ x
2,169,08,1

2
−=××−= qM X кН·м. 

III участок: м. 10 3 ≤≤ x

33
xBMM yBX +−= ; 

03 =x ;   кН·м; 2,31
3

−=XM

13 =x м;   кН·м. 2,161152,31
3

−=×+−=XM
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По найденным значениям изгибающих моментов строим грузо-
вую эпюру МF (рисунок 3.5, д). 

Прикладываем к основной системе силу  (рисунок 3.5, е) и 
строим единичную эпюру М

11 =Õ
1 (рисунок 3.5, ж). 

Прикладываем к основной системе силу  (рисунок 3.5, з) и 
строим единичную эпюру М

12 =Õ
2 ( рисунок 3.5, и). 

Определяем коэффициенты канонических уравнений путем пе-
ремножения эпюр способом Верещагина. Численные значения оп-
ределяем с точностью три знака после запятой: 

 

ZZZ EIEIÅI
667,2

3
82

3
222

2
11

11 ==⎟
⎠
⎞

⎜
⎝
⎛ ××=δ ; 

ZZZ EIEIEI
424,848,6944,18,128,18,1

3
28,18,1

2
11

22 =
+

=⎟
⎠
⎞

⎜
⎝
⎛ ××+××=δ ; 

ZZ EIEI
6,38,122

2
11

12 =⎟
⎠
⎞

⎜
⎝
⎛ ××=δ ; 

ZZZ
F EIEIEI

9,445,124,321
3
21115

2
12

2
122,161

1 −=
−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +××−××−=∆ ; 

.942,845,1332,58374,4496,17

8,1115
2
18,122,168,1

2
1

12
8,1108,1

3
22,168,1

2
11 3

2

ZZ

Z
F

EIEI

EI

−=
−−+−

=

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
××−××−×

×
+××−=∆

 
Можно провести проверку правильности вычисления коэффици-

ентов канонических уравнений. Для этого нужно построить в ос-
новной системе суммарную единичную эпюру моментов МS (рису-
нок 3.6, а) и умножить ее саму на себя:  

 
( )

.291,18267,608,10944,1

8,1
3
18,3

3
222

2
1

2
8,18,328,18,1

3
28,18,1

2
11

ZZ

Z
SS

EIEI

EI

=
++

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +××+

+
××+××=δ
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б

Рисунок 3.6 – Расчетная схема и эпюры внутренних силовых факторов: 
г д

а – суммарная единичная эпюра МS; б – схема для построения эпюр внутренних 
силовых факторов; в – суммарная эпюра изгибающих моментов М; г – эпюра 

 поперечных сил Q; д – эпюра продольных сил N 
 

Результат перемножения должен быть равен сумме коэффициен-
тов при неизвестных всех членов в канонических уравнениях. Про-
суммировав коэффициенты всех членов уравнений, получим ту же 
величину: 

.291,18424,86,32667,22 22121122211211
ZZZZ EIEIEIEI

=+⋅+=δ+δ×+δ=δ+δ+δ+δ=δΣ

Перемножая грузовую эпюру на суммарную единичную, должны 
получить сумму свободных членов уравнений: 

( )

( ) ;843,129998,2572,90374,4496,171

2
8,18,3

3
18,3

3
2115

2
1

2
8,18,322,168,1

2
1

12
8,1108,1

3
28,12,16

2
1

1

3

ZZ

Z
SF

EIEI

EI

−=−−+−=

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +

×+××−

−
+

××−×
×

+××−
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ZZZ
FF EIEIEI

842,129942,849,44
21 −=−−=∆+∆=∆Σ . 

001,0842,129843,129 =− . Погрешность 0,001 допустима. 
Подставляем полученные значения коэффициентов в канониче-

ские уравнения и находим неизвестные Х1 и Х2. 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=−+

=−+

.0942,84424,86,3

09,446,3667,2

21

21

X
EI

X
EI

EI
X

EI
X

EI

ZZ

ZZZ  

После упрощения уравнений: 

⎩
⎨
⎧

=−+
=−+

.0942,84424,86,3
09,446,3667,2

21

21

XX
XX

 

Решая систему уравнений, получим, кН и 
кН. Положительные значения сил показывают, что их 

направления совпадают с направлениями единичных сил. Прикла-
дываем найденные и рассматриваем их как внешние силы, прило-
женные к основной системе (рисунок 3.6, б).  

619,71 =X
826,62 =X

Определяем опорные реакции:  
∑ = 0xF ;   ;    кН. 08,12 =×−+ qXBx 174,11=xB

∑ = 0yF ;   ;   кН. 01 =+− XFBy 381,7=yB
∑ = 0BÌ ;   

 кН·м. 
;08,129,08,11 21 =×+×+××−×− XXpFM B

675,3=BM
Строим эпюру изгибающих моментов (рисунок 3.6, в):  
I участок: м. 8,10 1 ≤≤ x

2

2

121

qxxXM X −= ; 

01 =x ;   ;     0
1
=XM

8,11 =x м;   913,3
2

8,1108,1826,6
2

1
−=

×
−×=XM  кН·м. 

Проверяем наличие экстремума: 

012
1

1
1

=−== qxX
dx

dM
Q õ

õ ;   683,0
10
826,62

1 ===
q

X
x м; 

683,01 =x м;  332,2
2
683,010683,0826,6

2

1
=

×
−×=XM  кН·м. 
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II участок: м. 10 2 ≤≤ x
9,08,1212

××−= qxXM X ; 
02 =x ;  кН·м; 913,3

2
−=XM

12 =x м;  кН·м. 706,3
2
=XM

III участок: м. 10 3 ≤≤ x
33

xBMM yBX +−= ; 
03 =x ;   кН·м; 675,3

3
−=XM

13 =x м;  кН·м. 706,31381,7675,3
3X

Выполняем проверки: 
=×+−=M

1) статическую – проверяем равновесие вырезанного из рамы уз-
ла С под действием внешних сил и внутренних силовых факторов 
(рисунок 3.7). 

 
Рисунок 3.7 – Статическая проверка равновесия узла рамы 

 
2) деформационную – определяем перемещения в системе по на-
правлению лишних связей, перемножая поочередно суммарную 
эпюру изгибающих моментов на единичные эпюры: 

 

.0085,07145,3706,30625,3471,2652,0235,1

1
3
211675,3

2
11

3
11706,3

2
11

3
11913,3

2
11

3
21706,3

2
11

1

ZZZ

Z

EIEIEI

EI

−=
−

=
−+−

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +××−⎟

⎠
⎞

⎜
⎝
⎛ +×+××−××=∆

Определяем погрешность вычислений: %23,0%100
706,3
0085,0

=⋅  < [ ]%2 . 
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.011,0056,11045,11307,3335,3522,3335,3226,4374,4

8,11675,3
2
18,11706,3

2
1

8,11913,3
2
18,11706,3

2
18,1

3
28,1913,3

2
18,1

2
1

12
8,110

1
3

2

ZZZ

Z

EIEIEI

EI

−=
−

=
−+−+−

=

=
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

××−××+

+××−××+××−×
×

=∆

 
Определяем погрешность вычислений: %09,0%100

045,11
011,0

=⋅  < [ ]%2 . 

Следовательно, неизвестные силы определены верно, и эпюра М по-
строена правильно.  

Строим эпюру поперечных сил (рисунок 3.6, г): 
 
I участок: м. 8,10 1 ≤≤ x

121
qxXQX +−= ; 

01 =x ; кН;     826,6
1

−=XQ

8,11 =x м;  кН. 174,118,110826,6
1

=×+−=XQ

II участок: м. 10 2 ≤≤ x
619,712

−=−= XQX кН. 
III участок: м. 10 3 ≤≤ x

381,7
3

== yX BQ кН. 
Строим эпюру продольных сил (рисунок 3.6,д): 

I участок: м. 8,10 1 ≤≤ x
619,711

−=−= XN X кН. 
II участок: м. 10 2 ≤≤ x

174,1118826,68,122
−=−=⋅−= qXN X кН. 

III участок: м. 10 3 ≤≤ x
174,11

3
−=−= xX BN кН. 

Подбираем поперечное сечение. Из эпюры изгибающих момен-
тов следует, что кН·м в узле С. В этом же сечении воз-
никает продольная сила 

913,3max =M
174,11−=N кН. Определяем размеры попе-

речного сечения по условию прочности при изгибе без учета про-
дольной силы: 
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[ ]
( )

3
2

6
2

6

322
max bbbbhMWZ ===
σ

= ; 

[ ] 5,330367,0100
1602

10913,33
2

3 33
6

3 max ==
×

××
=

σ
=

Mb мм. 

Принимаем  5,33=b мм и 67=h мм. 
Производим проверку прочности выбранного сечения с учетом 

продольной силы: 

11,16113,15698,4

6
675,33
10913,3

675,33
10174,11

2

63
max

max =+=
×
×

−
×
×

−=+=σ
ZW

M
A
N МПа. 

Процент перегрузки  %7,0100
160

16011,161
=

− < [ ]%5 , что допустимо. 

 
3.3 Расчетно-графическая работа (РГР) 

«Расчет плоской статически неопределимой 
рамы методом сил» 

 
Для заданной плоской статически неопределимой рамы, пока-

занной на рисунке 3.8, требуется: 
1 Построить эпюры внутренних силовых факторов; 
2 Определить положение опасного сечения; 
3 Подобрать при [σ] 160= МПа размеры поперечного сечения в 

виде:  
для схем 1–10 – кольца, если отношение меньшего диаметра к боль-

шему 0,7; 
для схем 11–20 – прямоугольника, если отношение высоты к 

ширине 1,5; 
для схем 21–30 – трубчатого квадратного, если отношение 

меньшего размера к большему 0,8.  
Исходные данные для выполнения РГР «Расчет плоской стати-

чески неопределимой рамы методом сил» принять из рисунка 3.8 и 
таблицы 3.1. 
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3.4 Методические указания для выполнения 
РГР «Расчет плоской статически неопределимой 

рамы методом сил» 
 

1 Вычертить в масштабе схему рамы, приложить внешние на-
грузки, оставить на этой странице место для схем и эпюр. 

2 Определить степень статической неопределимости системы. 
3 Выбрать основную и эквивалентную системы.  
4 Составить канонические уравнения метода сил. 
5 Построить в основной системе эпюры изгибающих моментов 

от действия заданной нагрузки МF. 
6 Построить в основной системе эпюры изгибающих моментов М1 

и М2 от действия единичных сил, заменяющих неизвестные силы. 
7 Определить коэффициенты канонических уравнений путем пе-

ремножения эпюр способом Верещагина. 
8 Полученные значения коэффициентов подставить в канониче-

ские уравнения и определить неизвестные силы. 
9 Найденные значения сил приложить к основной системе, и по-

строить суммарную эпюру изгибающих моментов. 
10 Выполнить статическую и деформационную проверки. 
11 Построить эпюры поперечных и продольных сил. 
12 Определить положение опасного сечения.  
13 Подобрать размеры поперечного сечения. 
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Рисунок 3.8 – Схемы к РГР «Расчет плоской статически неопределимой рамы  

методом сил» 

 87



  
 
 

      
        

 

             
         

  
 

       

 
  

 
    

 

        
 
 

 

        

7 8 

9 10 

12 11 

 
Продолжение рисунка 3.8 
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Продолжение рисунка 3.8 
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Продолжение рисунка 3.8 
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Окончание рисунка 3.8 
Таблица 3.1 – Числовые данные к РГР  
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«Расчет плоской статически неопределимой рамы методом сил» 
Размеры, м Нагрузки №  

строки 
a b c m, кН·м F, кН p, кН/м 

1 1 1,4 0,8 8 12 10 
2 1,2 1,5 1 10 6 8 
3 1,5 1,2 1 12 4 10 
4 1  0,8 1,5 14 10 16 
5 1,6 1,2 1 15 8 10 
6 1,4 1 1,2 6 9 8 
7 1,2 1,4 0,8 12 15 10 
8 1 1,2 1,4 10 8 12 
9 1,2 1 1,2 8 10 14 

10 1,6 0,9 1,4 15 9 10 
11 1,5 1,2 0,8 10 6 12 
12 1 1,4 1 6 4 10 
13 1,8 0,9 1,4 5 14 8 
14 1 1,6 1,2 12 10 14 
15 1,5 1,2 1,4 8 16 10 
16 1,4 1 1,5 10 5 15 
17 1 1,5 1 14 7 12 
18 1,6 1 1,4 12 9 10 
19 1,5 1 1,2 10 8 14 
20 1,8 1 1,5 8 12 12 
21 1,7 1,5 0,7 5 8 16 
22 1,5 1 0,8 12 10 8 
23 1 1,7 1,4 6 5 12 
24 1,6 1,5 1 10 14 6 
25 1,7 1 1,5 8 6 10 
26 1,8 1,2 1 14 12 7 
27 1,5 1,5 1,2 5 10 14 
28 1 1,6 0,8 12 14 10 
29 1,7 1,2 1 10 12 8 
30 1,8 1 1,2 6 10 12 
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4 УСТОЙЧИВОСТЬ СЖАТЫХ СТЕРЖНЕЙ 
 
Литература: [1, С. 173–176], [2, С. 598–621], [3, 7, задачи 

№ 12.5, 12.6, 12.8, 12.10, 12.17]. 
Понятие об устойчивых и неустойчивых формах равновесия уп-

ругих тел. Устойчивость прямолинейной формы сжатых стержней. 
Критическая сила. Формула Эйлера. Влияние закрепления концов 
стержня на величину критической силы. Пределы применимости 
формулы Эйлера. Потеря устойчивости при напряжениях, превы-
шающих предел пропорциональности, формула Ясинского. Расчет 
на устойчивость по коэффициенту снижения допускаемых напря-
жений. Условие устойчивости сжатых стержней. Практические рас-
четы стержней на устойчивость. Выбор материалов и рациональной 
формы поперечных сечений для сжатых стержней. 

 
4.1 Основные понятия 

 
До сих пор мы рассматривали методы определения напряжений 

и перемещений, возникающих в стержнях, и, соответственно, зани-
мались оценкой их прочности и жесткости. Однако оказывается, 
что соблюдение условий прочности и жесткости еще не гарантиру-
ет способности конструкций выполнять предназначенные им функ-
ции в эксплуатационных режимах. Наряду с выполнением условий 
прочности и жесткости, необходимо обеспечить и устойчивость 
конструкций. 

При неизменной схеме нагружения под устойчивостью понима-
ется способность системы сохранять свое первоначальное равно-
весное состояние. Если рассматриваемая система таким свойством 
не обладает, то она называется неустойчивой, а ее равновесное со-
стояние − неустойчивым состоянием. 

При неизменной схеме нагружения в процессе роста интенсив-
ности нагрузок явление перехода системы от одного равновесного 
состояния к другому равновесному состоянию называется потерей 
устойчивости системы. Значения внешних сил, при которых про-
исходит потеря устойчивости, называются критическими.  

В некоторых случаях при потере устойчивости система, перехо-
дя в новое устойчивое равновесное состояние, продолжает выпол-
нять свои функции. Однако в большинстве случаев потеря устойчи-
вости системы сопровождается возникновением больших переме-
щений, пластических деформаций или ее полным разрушением. 
Поэтому сохранение исходного (расчетного) равновесного состоя-
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ния системы является важной задачей и одной из основных про-
блем сопротивления материалов. 

Основная задача теории устойчивости заключается в определе-
нии критического значения внешних сил и ограничение их величин 
таким образом, чтобы исключить возможность потери устойчиво-
сти заданной системы в эксплуатационных режимах. 

Пусть вертикальный стержень закреплен нижним концом, а на 
свободном верхнем конце центрально приложена продольная сила 
(рисунок 4.1). На начальном этапе нагружения равновесное состоя-
ние системы определяется как простое продольное сжатие, так как 
на данном этапе нагружения в поперечных сечениях стержня, за ис-
ключением продольной силы, остальные силовые факторы равны 
нулю. При дальнейшем росте внешней силы F, обнаруживается, что 
при некотором ее значении F = FK, стержень изогнется. Так как яв-
ление изгиба тесно связано с действием изгибающих моментов, воз-
никающих в поперечных сечениях стержня, можем утверждать, что 
при F = FK происходила смена формы равновесного состояния сис-
темы. Если на начальном этапе нагружения F < FK, равновесное со-
стояние вертикального стержня определялось как простое сжатие, 
то при F > FK сжатие сопровождается изгибом. Это означает, что 
при F = FK происходила потеря устойчивости системы.  

Следует отметить, что в данном случае смена формы равновесного 
состояния сопровождается и сменой формы деформирования: в докри-
тическом − прямолинейная форма деформирования, в закритическом − 
криволинейная, а в критическом − смешанная. 

Заметим также, что для гибких стержней потеря устойчивости 
может наступить при напряжениях, значительно меньших предела 
прочности материалов. Поэтому расчет стержней должен выпол-
няться при условии, что сжимающие напряжения не превышают 
критического значения с точки зрения потери их устойчивости. 

Наиболее типичным примером является работа стержня, сжатого 
силами F. При проверке на прочность мы имели условие   

                        ][σ≤=σ
A
F .                                      (4.1)  

Это условие предполагает, что стержень все время, вплоть до 
разрушения, работает только на осевое сжатие. Простейшие опыты 
показывают, что далеко не всегда возможно разрушить стержень 
путем доведения напряжений сжатия до предела текучести или до 
предела прочности материала. 
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Для центрального сжатого длинного стержня возможны две 
формы равновесия (рисунок 4.1): прямолинейная, когда F < Fк , и 
криволинейная, когда F ≥ Fк . Сила Fк называется критической. 
Критическая ― это такая наименьшая сила, при которой прямоли-
нейная форма равновесия стержня становится неустойчивой. Кри-
тическая сила (при потере устойчивости в упругой стадии) вычис-
ляется по формуле Эйлера: 

                       2
min

2

ê
)( l
IE

F
µ

π
= ,                                  (4.2) 

где Imin – минимальный момент инерции поперечного сечения 
стержня;  

l – длина стержня; 
µ ― коэффициент приведения длины, величина которого зави-

сит от способов закрепления концов стержня. 

 
 

Рисунок 4.1 – Формы равновесия сжатого стержня 
 

Для четырех, наиболее часто встречающихся случаев закрепле-
ния концов стержня коэффициент µ имеет следующие значения 
(таблица 4.1).  

Напряжения, возникающие в поперечном сечении стержня при F 
= Fк, называются критическими и определяются по формуле: 

            2

2

2
min

2
ê

ê
)( λ

π
=

µ

π
==σ

E
Al

IE
A

F ,                         (4.3) 

где А – площадь поперечного сечения стержня; 
Е – модуль продольной упругости материала стержня; 

mini
lµ

=λ ― гибкость стержня; 
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A
Ii min

min =  ― минимальный радиус инерции сечения. 

Формула Эйлера применима, когда критические напряжения в 
материале стержня σк не превышают предела пропорциональности 
σп ( σк ≤ σп). 

 
Таблица 4.1– Зависимость коэффициента приведения длины 

от способа закрепления 
 

Способ закрепления 
cтержня по концам 

Схема закреп-
ления стержня 

Коэффициент 
приведения 
длины 

µ 

Критическая 
сила Fк

 
Оба конца шарнирно 

закреплены  

 

1 
2

min
2

l
IEπ

 

Один конец жестко  
защемлен, 

другой – свободен 

 

2 2
min

2

4 l
IEπ

 

 
Оба конца защемле-

ны 

 

0,5 
2

min
24
l

IEπ
 

Один конец защем-
лен, 

другой ― шарнирно 
закреплен 

 

0,7 
2

min
22
l

IEπ
≈  
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                      ï2

2
σ≤

λ

π E .                                  (4.4)

Обычно условие применимости (4.4) формулы Эйлера выражают 
через гибкость стержня, т.е. формула Эйлера применима, когда 
гибкость стержня больше предельной, где 

                            ,                                       (4.5) ïðåäλ≥λ

                   
ï

2

ïðåä σ
π

=λ
Å

.                                       (4.6) 

Предельная гибкость стержня зависит от материала. Примерные 
значения предельной гибкости: для стали Ст2 и Ст3 λпред ≈ 100, для 
стали Ст5 λпред ≈ 90, для чугуна λпред ≈ 80, для дерева (сосны)  
λпред ≈ 70, для некоторых марок легированной стали λпред ≈ 60÷70.  

Для стержней, имеющих жесткость, меньшую предельной, т.е. у 
которых напряжения превышают предел пропорциональности и по-
теря устойчивости наступает в пластической стадии, критические 
напряжения определяются по эмпирической формуле Ясинского: 

                 ,                                  (4.7) 2
ê λ−λ−=σ cba

где a, b, c – опытные коэффициенты, зависящие от свойств мате-
риала и имеющие размерность напряжения.  

Для стержней, изготовленных из пластичных материалов, фор-
мула Ясинского применима при гибкостях 

                   ,                                    (4.8) ïðåäò λ≤λ≤λ

где λт – значение гибкости, при которой критическое напряжение 
равно пределу текучести (σТ) материала стержня. 

При гибкости стержня λ < λт  критическое напряжение принима-
ют постоянным и равным пределу текучести материала, т.е . òê σ=σ

Критическая сила в этом случае вычисляется по формуле  
                  ,                                      (4.9) áðóòòîêê AF σ=

где А брутто – площадь поперечного сечения стержня без учета мест-
ных ослаблений. 

Допускаемая величина сжимающей силы определяется по формуле: 

                     
][

][
y

ê
n
FF = ,                                       (4.10) 

где [ny] – требуемый (допускаемый) коэффициент безопасности на 
устойчивость. 
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Коэффициент безопасности на устойчивость всегда принимается 
несколько больше коэффициента безопасности на прочность. Это 
делается потому, что для центрально сжатых стрежней ряд обстоя-
тельств почти неизбежен на практике: эксцентриситет приложения, 
неоднородность материала, способствуют продольному изгибу, в то 
время как при других видах нагружения эти обстоятельства почти 
не влияют на прочность. Коэффициент безопасности на устойчи-
вость принимают в пределах: для сталей [ny] = 1,8÷3,0; для чугуна 
[ny] = 5,0÷5,5; для дерева [ny] = 2,8÷3,2. 

На практике, в основном при расчете элементов строительных кон-
струкций и стальных конструкций подъемно-транспортных машин, 
применяется так называемый практический метод расчета на продоль-
ный изгиб. Расчет на устойчивость по этому методу производится на 
простое сжатие, но со сниженным допускаемым напряжением. 

Расчетная формула (условие устойчивости) 

                [ ]y
áðóòòî

σ≤=σ
A

F ,                              (4.11) 

где [σy] ― допускаемое напряжение на устойчивость, равное 
[ ] [ ]cy σϕ=σ ; 

ϕ  ― коэффициент снижения допускаемого напряжения или 
коэффициент продольного изгиба; 

[σс] ― допускаемое напряжение на сжатие для материала 
стержня. 

Следует отметить, что сжатые стержни должны удовлетворять и 
условию прочности 

              [ ]ñ
íåòòî

max σ≤=σ
A

F ,                         (4.12) 

где Анетто ― площадь поперечного сечения стержня с учетом мест-
ных ослаблений. 
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Таблица 4.2 – Коэффициент φ снижения допускаемых напряжений 
 

Бетон Гибкость 
стержня 

λ 

Сталь 
Ст 4,3, 2 

Сталь 
Ст 5 

тяжелый легкий 

Дюралю- 
миний 
Д16Т 

Чугун 
СЧ 15-30 
СЧ 15-18 
СЧ 15-36 
СЧ 21-40 

 
Дерево 
(сосна) 

0 
10 
20 
30 
40 
50 
60 
70 
80 
90 

100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

1,00 
0,99 
0,96 
0,94 
0,92 
0,89 
0,86 
0,81 
0,75 
0,69 
0,60 
0,52 
0,45 
0,40 
0,36 
0,32 
0,29 
0,26 
0,23 
0,21 
0,19 

1,00 
0,98 
0,95 
0,92 
0,89 
0,86 
0,82 
0,76 
0,70 
0,62 
0,51 
0,43 
0,36 
0,33 
0,29 
0,26 
0,24 
0,21 
0,19 
0,17 
0,16 

1,00 
1,00 
0,96 
0,90 
0,84 
0,76 
0,70 
0,63 
0,57 
0,51 
0,45 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

1,00 
1,00 
0,96 
0,86 
0,73 
0,68 
0,59 
0,52 
0,46 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

1,00 
0,999 
0,998 
0,835 
0,700 
0,568 
0,455 
0,353 
0,269 
0,212 
0,172 
0,142 
0,119 
0,101 
0,087 
0,076 

- 
- 
- 
- 
- 

1,00 
0,97 
0,91 
0,81 
0,69 
0,57 
0,44 
0,34 
0,26 
0,20 
0,16 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

1,00 
0,99 
0,97 
0,93 
0,87 
0,80 
0,71 
0,60 
0,48 
0,38 
0,31 
0,25 
0,22 
0,18 
0,16 
0,14 
0,12 
0,11 
0,10 
0,09 
0,08 
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4.2 Примеры решения задач 
 

Пример 4.1 Определить размеры поперечного сечения деревянной 
стойки длиной l=2,5м нагруженной силой F=22 кН (рисунок 4.2).  

                          
Рисунок 4.2 

Решение: 
Условие устойчивости  

][σϕ≤=σ
áðÀ
F . 

Отсюда  

][σϕ
=

FÀáð . 

Площадь поперечного сечения исходя из размеров 

=
π

−⋅=
4

23
2dddÀáð

2215,5 d . 

Отсюда  

215,5
áðA

d = . 

Минимальный осевой момент инерции будет относительно оси 
Х и равен 

4
43

min 95,1
6412

)2(3 ddddII x =
π

−
⋅

== . 
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Минимальный радиус инерции равен 

d
d

d
À
Ii

áð
612,0

215,5
95,1

2

4
min

min === . 

Гибкость стойки 

ddi
l 4085

612,0
25001

min
=

×
=

µ
=λ . 

В первом приближении задаем = 0,5. 0ϕ
Тогда площадь 

25500
85,0

22000 ììÀáð =
×

= , ,32
215,5

5500 ììd ==   127
32

4085
==λ  

По таблице 4.2 для гибкости 120=λ  22,0=ϕ , для 130=λ  
. 18,0=ϕ

Интерполируя для 127=λ , 19,0)120127(
120130

18,022,022,01 =−
−
−

−=ϕ . 

Т.к.  необходимо выполнить второе прибли-
жение. 

5,019,0 01 =ϕ=ϕ <

Задаем коэффициент 35,0
2

19,05,0
2

10
2 =

+
=

ϕ+ϕ
=ϕ . 

И производим вновь вычисления 
27857

835,0
22000 ììÀáð =

⋅
= ,39

215,5
7857 ììd == 105

39
4085

==λ . 

По таблице 4.2 для 100=λ  , для 31,0=ϕ 110=λ , 25,0=ϕ                

Интерполируя для 105=λ , 28,0)100105(
100110

25,031,031,03 =−
−
−

−=ϕ . 

Т.к. , необходимо выполнить третье при-
ближение. 

35,028,0 23 =ϕ=ϕ <

Задаем коэффициент 32,0
2

28,035,0
2

32
4 =

+
=

ϕ+ϕ
=ϕ . 

И производим вновь вычисления: 
28594

832,0
22000 ììÀáð =

⋅
= ,41

215,5
8594 ììd == 100

41
4085

==λ . 

По таблице 4.2 для 100=λ  . 31,05 =ϕ
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Т.к.  приближение заканчиваем и принима-

ем , , 
. 

31,032,0 54 =ϕ≈=ϕ

,41ììd = 28594 ììÀ = 4644
min 105,54195,195,1 ììdI ×=×==

31,03 =ϕ
Определяем напряжение в материале стойки  

ÌÏà
A
F 56,2

8594
22000

===σ . 

Допускаемое напряжение на устойчивость  
ÌÏàó 48,2831,0][][ =⋅=σ⋅ϕ=σ . 

Перегрузка  

=⋅
σ

σ−σ
%100

][
][

ó

ó %]5[%2,3%100
48,2

48,256,2
p=⋅

− . 

Т.к. фактическая гибкость  критическую силу 
определяем по формуле Эйлера 

70100 =λ=λ ïðåäf

2

2

)( l
EI

F ìèí
êð

µ

π
= = êÍÍ 6969412

)25001(
105,5108,0

2

642
≈=

×

×××π  

     Коэффициент запаса по устойчивости  

2,3
22000
69412

===
F

F
n êð

y . 

Пример 4.2 Подобрать двутавровое сечение стойки, изготовлен-
ной из стали Ст3 с одним защемленным концом, второй конец сво-
боден и сжатой силой F = 400 кН; длина стойки l = 1,5 м. Допус-
каемое напряжение =σ][ 160 МПа (рисунок 4.3). 

                   

 
Рисунок 4.3 – Расчетная схема сжатой стойки 

 102



Так как в условии устойчивости  

][σϕ≤=σ
áðÀ
F  

неизвестно ни Абр, ни , одной из этих величин необходимо за-
даться. Примем для первого приближения . В этом случае 

необходимая площадь поперечного сечения стержня будет равна 
5,00 =ϕ

,
][0 σϕ

=
FÀáð

 

или  
.5000

1605,0
400000 2ììÀáð =

×
=

 

По таблице сортамента выбираем двутавр №24а с площадью по-
перечного сечения Абр=52,6 см². 

Наименьший радиус инерции сечения ñì38,2min
min ==

áðÀ
I

i . 

Соответствующая гибкость стойки  

.126
38,2
1502

=
×

=
µ

=λ
i
l  

По таблице 4.3 для 120=λ  45,0=ϕ ; для 130=λ  40,0=ϕ . 
Коэффициент ϕ  по интерполяции между значениями его из таб-

лицы для и 120=λ 130=λ  равен 43,0=ϕ . Расчетным напряжением 
будет: 

.ÌÏà160ÌÏà177
106,5243,0

400000
2 f=

××
=

ϕ
=σ

F
Ð

ð  

Перенапряжение составляет %7,10100
160

160177
=×

−
. Подбираем 

двутавр № 27а. Абр = 54,6см²; ; наибольшая его гиб-

кость 

ñì51,2min =i

120
51,2
502

=
×

=λ . Так как коэффициент 45,0=ϕ , то расчетное 

напряжение 

ÌÏà.5,162
6,5445,0

400000
=

×
==σ

áðÀ
F  
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Перенапряжение составляет 

                  %]5[%5,1%100
160

1605,162
p=⋅

− , что допустимо. 

Пример 4.3 Определим предельную гибкость для стержней, изго-
товленных из перечисленных материалов: 

Сталь Ст3 , , ÌÏàï 200=σ ÌÏàÅ 5102×=

Сталь Ст5 , , ÌÏàï 240=σ ÌÏàÅ 5102×=
Дюралюминий Д16Т , , ÌÏàï 177=σ ÌÏàÅ 5107,0 ×=
Дерево (сосна) , , ÌÏàï 20=σ ÌÏàÅ 410=
Чугун , . ÌÏàï 150=σ ÌÏàÅ 510=
Решение: 
Предельную гибкость определяем по формуле: 

ï
ïðåä

Å
σ
π

=λ
2

. 

Для стали Ст3 3,99
200

102 52
=

××π
=λ ïðåä . 

Для стали Ст5 91
240

102 52
=

××π
=λ ïðåä . 

Для дюралюминия Д16Т 62
177

107,0 52
≈

××π
=λ ïðåä . 

Для дерева (сосна) 70
20

101,1 42
≈

××π
=λ ïðåä . 

Для чугуна 81
150

1052
=

×π
=λ ïðåä . 

 
 

4.3 Расчетно-графическая работа (РГР) 
«Устойчивость сжатых стержней» 

 
Для заданного стержня, нагруженного сосредоточенной силой F, 

как показано на рисунке 4.4, требуется: 
1 Определить размеры поперечного сечения; 
2 Определить критическую силу для заданной стойки и вычис-

лить коэффициент безопасности на устойчивость. 
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Исходные данные для выполнения РГР «Устойчивость сжатых 
стержней» принять из рисунка 4.4 и таблицы 4.2 (двутавр ГОСТ 
8239-89, швеллер ГОСТ 8240-89, уголок неравнополочный ГОСТ 
8510-72). При расчетах использовать двутавр ГОСТ 8239-89, швел-
лер ГОСТ 8240-89, уголок неравнополочный ГОСТ 8510-72.  

 
4.4 Методические указания для выполнения  

РГР «Устойчивость сжатых стержней» 
 

1 Вычертить в масштабе схему и поперечное сечение стойки. 
2 В поперечном сечении стойки провести главные центральные 
оси. Найти ось, относительно которой осевой момент инерции ми-
нимальный (Imin), при необходимости путем вычислений. 
3 Выразить в долях искомого размера (а) сечения следующие гео-
метрические характеристики: площадь (А), осевой момент инерции 
(Imin) и минимальный радиус инерции (imin). 
4 Для решения задачи использовать метод последовательных при-
ближений, задаваясь коэффициентом продольного изгиба (ϕ); в 
первом приближении принять ϕ0 = 0,5. 
5 Решение производить до тех пор, пока разность между нормаль-
ными напряжениями стойки и допускаемыми напряжениями на ус-
тойчивость будет не более 5%. 
6 По соответствующей формуле (в зависимости от фактической и 
предельной гибкостей) определить критическую силу или критиче-
ское напряжение для заданной стойки и вычислить коэффициент 
безопасности на устойчивость. 

Таблица 4.2 – Числовые данные к РГР 
«Устойчивость сжатых стержней» 

 

№ l, м F, кН № I, м F, кН № I, м F, кН № I, м F, кН 

1 
2 
3 
4 
5 
6 
7 
8 

1,8 
2,6 
3,4 
4,2 
3,2 
4,0 
3,2 
2,4 

100 
220 
340 
140 
160 
200 
220 
290 

9 
10 
11 
12 
13 
14 
15 
16 

2,0 
2,8 
3,6 
4,4 
3,6 
3,8 
3,0 
2,2 

150 
180 
300 
100 
320 
240 
160 
140 

17 
18 
19 
20 
21 
22 
23 
24 

2,2 
3,0 
3,8 
4,6 
2,4 
3,6 
2,8 
2,0 

200 
180 
250 
480 
460 
480 
500 
60 

25 
26 
27 
28 
29 
30 
31 
32 

2,4 
3,2 
4,0 
3,6 
3,8 
3,4 
2,6 
1,8 

200 
100 
200 
300 
250 
500 
150 
320 
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Рисунок 4.4 – Схемы к РГР «Устойчивость сжатых стержней» 
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Продолжение рисунка 4.4 
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Продолжение рисунка 4.4 
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Окончание рисунка 4.4 
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